Geometric view of the thermodynamics of adsorption at a line of three-phase contact

被引:17
|
作者
Djikaev, Y [1 ]
Widom, B [1 ]
机构
[1] Cornell Univ, Baker Lab, Dept Chem, Ithaca, NY 14853 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 121卷 / 12期
关键词
D O I
10.1063/1.1784772
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider three fluid phases meeting at a line of common contact and study the linear excesses per unit length of the contact line (the linear adsorptions Lambda(i)) of the fluid's components. In any plane perpendicular to the contact line, the locus of choices for the otherwise arbitrary location of that line that makes one of the linear adsorptions, say Lambda(2), vanish, is a rectangular hyperbola. Two of the adsorptions Lambda(2) and Lambda(3) then both vanish when the contact line is chosen to pass through any of the intersections of the two corresponding hyperbolas Lambda(2)=0 and Lambda(3)=0. There may be two or four such real intersections. It is found most surprisingly, and confirmed in a numerical example, that Lambda(1(2,3)), the adsorption of component 1 in a frame of reference in which the adsorptions Lambda(2) and Lambda(3) are both 0, depends on which intersection of the hyperbolas Lambda(2)=0 and Lambda(3)=0 is chosen for the location of the contact line. This implies that what had long been taken to be the line analog of the Gibbs adsorption equation is incomplete; there must be additional, previously unanticipated terms in the relation, consistent with the invariance of the line tension to choice of location of the contact line. It is then not Lambda(1(2,3)) by itself but a related expression containing it that must be invariant, and this invariance is also confirmed in the numerical example. The presence of the additional terms in the adsorption equation is further confirmed and their origin clarified in a mean-field density-functional model. The supplemental terms vanish at a wetting transition, where one of the contact angles goes to 0. (C) 2004 American Institute of Physics.
引用
收藏
页码:5602 / 5610
页数:9
相关论文
共 50 条
  • [1] Adsorption at a line of three-phase contact
    Widom, B
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 239 (1-3) : 141 - 144
  • [2] Models of adsorption at a line of three-phase contact
    Widom, B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (44): : 22125 - 22132
  • [3] Adsorption equation for the line of three-phase contact
    Taylor, CM
    Widom, B
    MOLECULAR PHYSICS, 2005, 103 (05) : 647 - 655
  • [4] Description of the three-phase contact line expansion
    Vachova, Tereza
    Brabcova, Zuzana
    Basarova, Pavlina
    EFM13 - EXPERIMENTAL FLUID MECHANICS 2013, 2014, 67
  • [5] Dewetting of the Three-Phase Contact Line on Solids
    Fang, Xiaohua
    Pimentel, Miguel
    Sokolov, Jonathan
    Rafailovich, Miriam
    LANGMUIR, 2010, 26 (11) : 7682 - 7685
  • [6] Dependency of Contact Angles on Three-Phase Contact Line: A Review
    Erbil, H. Yildirim
    COLLOIDS AND INTERFACES, 2021, 5 (01)
  • [7] On the Role of the Three-Phase Contact Line in Surface Deformation
    Leh, Aisha
    N'guessan, Hartmann E.
    Fan, Jianguo
    Bahadur, Prashant
    Tadmor, Rafael
    Zhao, Yiping
    LANGMUIR, 2012, 28 (13) : 5795 - 5801
  • [8] Dielectrophoretic trapping of particles at the three-phase contact line
    Kumar, Anil
    Khusid, Boris
    Acrivos, Andreas
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (21) : 6978 - 6980
  • [9] Deformation of an Elastic Substrate by a Three-Phase Contact Line
    Jerison, Elizabeth R.
    Xu, Ye
    Wilen, Larry A.
    Dufresne, Eric R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (18)
  • [10] Nonequilibrium thermodynamic description of the three-phase contact line
    Bedeaux, D
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (08): : 3744 - 3748