BAYESIAN MESH ADAPTATION FOR ESTIMATING DISTRIBUTED PARAMETERS

被引:2
|
作者
Calvetti, Daniela [1 ]
Cosmo, Anna [2 ]
Perotto, Simona [3 ]
Somersalo, Erkki [1 ]
机构
[1] Case Western Reserve Univ, Math Appl Math & Stat, Cleveland, OH 44106 USA
[2] Microsoft Azure, Milan, Italy
[3] Politecn Milan, Dipartimento Matemat MOX Modeling & Sci Comp, I-20133 Milan, Italy
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 06期
关键词
posteriori estimate; inverse problems; X-ray tomography; Darcy flow; SUPERCONVERGENT PATCH RECOVERY; MODEL-REDUCTION; 3-D INVERSION; ERROR; ACCURACY;
D O I
10.1137/20M1326222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of estimating numerically a distributed parameter from indirect measurements arises in many applications, and in that context the choice of the discretization plays an important role. In fact, guaranteeing a certain level of accuracy of the forward model that maps the unknown to the observations may require a fine discretization, adding to the complexity of the problem and to the computational cost. On the other hand, reducing the complexity of the problem by adopting a coarser discretization may increase the modeling error and can be very detrimental for ill-posed inverse problems. To balance accuracy and complexity, we propose an adaptive algorithm for adjusting the discretization level automatically and dynamically while estimating the unknown distributed parameter by an iterative scheme. In the Bayesian paradigm, all unknowns, including the metric that defines the discretization, are modeled as random variables. Our approach couples the discretization with a Bayesian hierarchical hyperparameter that is estimated simultaneously with the unknown parameter of primary interest. The viability of the proposed algorithm, the Bayesian mesh adaptation (BMA) is assessed on two test cases: a fan-beam X-ray tomography problem and an inverse source problem for a Darcy flow model.
引用
收藏
页码:A3878 / A3906
页数:29
相关论文
共 50 条
  • [1] Estimating deterministic parameters by Bayesian inference with emphasis on estimating the uncertainty of the parameters
    Emery, A. F.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (02) : 263 - 274
  • [2] A Bayesian approach for estimating the parameters of an α-stable distribution
    Karling, M. J.
    Lopes, S. R. C.
    Souza, R. M. de
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (09) : 1713 - 1748
  • [3] A BAYESIAN-APPROACH TO ESTIMATING HOUSEHOLD PARAMETERS
    ROSSI, PE
    ALLENBY, GM
    JOURNAL OF MARKETING RESEARCH, 1993, 30 (02) : 171 - 182
  • [4] Estimating gap acceptance parameters with a Bayesian approach
    Ting, Samson
    Lymburn, Thomas
    Stemler, Thomas
    Sun, Yuchao
    Small, Michael
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2025, 192
  • [5] Estimating the parameters of a Rice distribution: a Bayesian approach
    Lauwers, Lieve
    Barte, Kurt
    Van Moer, Wendy
    Pintelon, Rik
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 110 - 113
  • [6] A Bayesian Method for Estimating Parameters in Stochastic Differential Equations
    Karimi, Hadiseh
    McAuley, Kimberley B.
    IFAC PAPERSONLINE, 2015, 48 (08): : 147 - 152
  • [7] Estimating parameters in stochastic systems: A variational Bayesian approach
    Vrettas, Michail D.
    Cornford, Dan
    Opper, Manfred
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (23) : 1877 - 1900
  • [8] Use of Bayesian networks in estimating the reliability of distributed communication systems
    Honari, Bahman
    Donovan, John
    Flood, Ben
    Murphy, Eamonn
    TWELFTH ISSAT INTERNATIONAL CONFERENCE RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2006, : 25 - +
  • [9] Bayesian Tangent Shape Model: Estimating shape and pose parameters via Bayesian inference
    Zhou, Y
    Gu, L
    Zhang, HJ
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 109 - 116
  • [10] A METHOD FOR ESTIMATING PARAMETERS OF K-DISTRIBUTED CLUTTER
    RAGHAVAN, RS
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (02) : 238 - 246