Direct numerical simulation of pore scale particle-water-oil transport in porous media

被引:29
|
作者
Su, Junwei [1 ]
Chai, Guoliang [1 ]
Wang, Le [2 ]
Cao, Weidong [3 ]
Yu, Jinbiao [3 ]
Gu, Zhaolin [1 ]
Chen, Chungang [4 ,5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Human Settlement & Civil Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xian Shiyou Univ, Mech Engn Coll, Xian 710049, Shaanxi, Peoples R China
[3] Sinopec Grp, Res Inst Explorat & Dev, Shengli Oilfield Co, Dongying 257015, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Shaanxi, Peoples R China
[5] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Pore scale; Discrete element method; Fictitious domain method; OpenFOAM; RIGID; DISCRETE ELEMENT SIMULATION; IMMERSED BOUNDARY METHOD; CIRCULAR-CYLINDER; TRACKING METHOD; FLOW; DEPOSITION; ALGORITHM; SYSTEMS; VOLUME; MODEL;
D O I
10.1016/j.petrol.2019.04.078
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a direct numerical simulation method, for pore scale particle-water-oil transport in porous media is proposed in hybrid Eulerian-Lagrangian framework. In this method, Navier-Stokes equation in Eulerian framework is coupled with discrete element method (DEM) in Lagrangian framework through direct numerical evaluation of fluid-particle interaction using fictitious domain method (FDM). In Eulerian framework, volume of fluid (VOF) method is employed to capture immiscible two-phase interface; Ghost fluid method and balanced-force scheme are used to treat the surface tension to lower interface spurious currents. In Lagrangian framework, RIGID algorithm is employed to detect the contact states between spherical particles with arbitrarily topological pore walls, making the method adapt to arbitrary pore space; Injection of particles with arbitrary size distribution at a specific mass flow rate makes the method adapt to open system. After validating the new method using two benchmark test cases, a numerical simulation of particle flooding process in a real rock is performed. Numerical results show that in the particle flooding process, three different stages, i.e. drainage period, analogy water flooding period and effective period of particle flooding, are involved. Distinct macroscopic flow characteristics are observed in different periods. Particle size is an important factor influencing the pore scale behaviors (such as, particle space translation and diffusion, remaining oil distribution, degree of fluid diversion) and macroscopic flow phenomena (such as, average oil fraction, average water or oil migration velocity in mainstream direction and transverse direction, sweeping efficiency).
引用
下载
收藏
页码:159 / 175
页数:17
相关论文
共 50 条
  • [1] Pore-scale direct numerical simulation of particle transport in porous media
    Su, Junwei
    Chai, Guoliang
    Wang, Le
    Cao, Weidong
    Gu, Zhaolin
    Chen, Chungang
    Xu, Xiao Yun
    CHEMICAL ENGINEERING SCIENCE, 2019, 199 : 613 - 627
  • [2] Direct numerical simulation of particle pore-scale transport through three-dimensional porous media with arbitrarily polyhedral mesh
    Su, Junwei
    Chai, Guoliang
    Wang, Le
    Yu, Jinbiao
    Cao, Weidong
    Gu, Zhaolin
    Chen, Chungang
    Meng, Wei
    POWDER TECHNOLOGY, 2020, 367 : 576 - 596
  • [3] Water transport in porous media at pore scale
    Yu, Mingzhi
    Peng, Xiaofeng
    Fang, Zhaohong
    HT2005: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2005, VOL 1, 2005, : 181 - 185
  • [4] Direct Numerical Simulation of Pore-scale Unidirectional Plow in Porous Media
    Niyazbek, Muheyat
    Talp, Kuenssaule
    Kudaikulov, A. A.
    2017 3RD INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE (EEMS 2017), 2017, 94
  • [5] Pore-scale direct numerical simulation of Haines jumps in a porous media model
    Adam O’Brien
    Shahriar Afkhami
    Markus Bussmann
    The European Physical Journal Special Topics, 2020, 229 : 1785 - 1798
  • [6] Pore-scale direct numerical simulation of Haines jumps in a porous media model
    O'Brien, Adam
    Afkhami, Shahriar
    Bussmann, Markus
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (10): : 1785 - 1798
  • [7] Pore scale simulation of solute transport in fractured porous media
    Zhang, DX
    Kang, QJ
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (12) : L125041 - 5
  • [8] Numerical simulation of retention and release of colloids in porous media at the pore scale
    Sefrioui, Nisrine
    Ahmadi, Azita
    Omari, Aziz
    Bertin, Henri
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 427 : 33 - 40
  • [9] Pore scale numerical simulation of supercritical CO2 injecting into porous media containing water
    Xu, Ruina
    Luo, Shu
    Jiang, Peixue
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 4418 - 4424
  • [10] A pore-scale numerical framework for solute transport and dispersion in porous media
    Liu, Yang
    Gong, Wenbo
    Xiao, Han
    Wang, Moran
    ADVANCES IN WATER RESOURCES, 2024, 183