Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation

被引:81
|
作者
Deng Huan [1 ,2 ,3 ]
Wu Yi-Cheng [1 ]
Zhang Fan [1 ]
Huang Zong-Chuan [1 ]
Chen Zheng [2 ]
Xu Hui-Juan [1 ]
Zhao Feng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Peoples R China
[2] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
[3] Nanjing Normal Univ, Dept Environm Sci & Engn, Nanjing 210046, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
electrogenic bacteria; impedance; soil depth; soil organic matter; voltage; ELECTRICITY-GENERATION; MICROORGANISMS; ENERGY; CONSTRUCTION; TEMPERATURE; BIOFILMS;
D O I
10.1016/S1002-0160(14)60019-9
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m(-2). The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 Omega external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Escherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.
引用
收藏
页码:330 / 338
页数:9
相关论文
共 50 条
  • [1] Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation
    DENG Huan
    WU YiCheng
    ZHANG Fan
    HUANG ZongChuan
    CHEN Zheng
    XU HuiJuan
    ZHAO Feng
    [J]. Pedosphere, 2014, (03) - 338
  • [2] Factors Affecting the Performance of Single-Chamber Soil Microbial Fuel Cells for Power Generation
    DENG Huan
    WU Yi-Cheng
    ZHANG Fan
    HUANG Zong-Chuan
    CHEN Zheng
    XU Hui-Juan
    ZHAO Feng
    [J]. Pedosphere, 2014, 24 (03) : 330 - 338
  • [3] Power generation response to readily biodegradable COD in single-chamber microbial fuel cells
    Kim, Hongsuck
    Kim, Byunggoon
    Yu, Jaecheul
    [J]. BIORESOURCE TECHNOLOGY, 2015, 186 : 136 - 140
  • [4] The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs)
    Sharma, Yogesh
    Li, Baikun
    [J]. BIORESOURCE TECHNOLOGY, 2010, 101 (06) : 1844 - 1850
  • [5] Electricity generation of single-chamber microbial fuel cells at low temperatures
    Cheng, Shaoan
    Xing, Defeng
    Logan, Bruce E.
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (05): : 1913 - 1917
  • [6] Electricity generation from polyalcohols in single-chamber microbial fuel cells
    Catal, Tunc
    Xu, Shoutao
    Li, Kaichang
    Bermek, Hakan
    Liu, Hong
    [J]. BIOSENSORS & BIOELECTRONICS, 2008, 24 (04): : 849 - 854
  • [7] Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    Cheng, Shaoan
    Logan, Bruce E.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (06) : 4468 - 4473
  • [8] Effect of Nitrogen Concentration on the Performance of Single-Chamber Microbial Fuel Cells
    Sawasdee, Vanatpornratt
    Pisutpaisal, Nipon
    [J]. 2015 INTERNATIONAL CONFERENCE ON ALTERNATIVE ENERGY IN DEVELOPING COUNTRIES AND EMERGING ECONOMIES, 2015, 79 : 620 - 623
  • [9] Glycerol degradation in single-chamber microbial fuel cells
    Nimje, Vanita Roshan
    Chen, Chien-Yen
    Chen, Chien-Cheng
    Chen, Hau-Ren
    Tseng, Min-Jen
    Jean, Jiin-Shuh
    Chang, Young-Fo
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 2629 - 2634
  • [10] Enhancing the stability of power generation of single-chamber microbial fuel cells using an anion exchange membrane
    Mo, Yinghui
    Liang, Peng
    Huang, Xia
    Wang, Huiyong
    Cao, Xiaoxin
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2009, 84 (12) : 1767 - 1772