Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil

被引:43
|
作者
Hawker, Darryl W. [1 ]
Cropp, Roger [1 ]
Boonsaner, Maliwan [2 ]
机构
[1] Griffith Univ, Sch Environm, Atmospher Environm Res Ctr, Nathan, Qld 4111, Australia
[2] Silpakorn Univ, Fac Sci, Dept Environm Sci, Nakhon Pathom 73000, Thailand
关键词
Antibiotics; Maximum plant concentration; Temporal behaviour; Root concentration factor; Chemical activity model; ORGANIC-CHEMICALS; PLANT UPTAKE; OXYTETRACYCLINE; TETRACYCLINES; TRANSLOCATION; ACCUMULATION; DEGRADATION; ENVIRONMENT; CHLORTETRACYCLINE; LIPOPHILICITY;
D O I
10.1016/j.jhazmat.2013.09.066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Antibiotics, including members of the tetracycline and fluoroquinolone families, are emerging organic environmental contaminants. Uptake from soil by plants is a means for antibiotics to enter terrestrial food chains. Chemical exchange between plant and the soil/water matrix occurs simultaneously with degradation in the soil/water matrix. In this study, the comparative temporal behaviour of rice (Oryza sativa L) towards the zwitterionic antibiotics oxytetracycline, chlortetracycline and norfloxacin at initial soil/water concentrations of 10,20 and 30 mu g g(-1) (dry weight) is investigated. This is accomplished within the framework of an activity-based mass-conserving dynamic model. Plant antibiotic concentrations are observed to increase to a maximum then decline. Maximum concentrations in rice are compound-dependent linear functions of initial soil/water concentrations, but the relationships are not related to the compound octan-1-ol/water distribution ratio (D-ow). The times required to attain maximal concentrations are independent of initial soil/water levels for a given antibiotic, but again vary between antibiotics and are not related to D-ow values. Translocation from root to other tissues is not observed. The magnitudes of Root Concentration Factors (RCFs), the ratio of root and soil/water concentrations, are consistent with significant sorption to soil and consequent relatively low concentrations in interstitial water. (C) 2013 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:458 / 466
页数:9
相关论文
共 50 条
  • [1] Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil
    Saengwilai, Patompong
    Meeinkuirt, Weeradej
    Pichtel, John
    Koedrith, Preeyaporn
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (18) : 15756 - 15767
  • [2] Investigation of the mechanism of uptake and accumulation of zwitterionic tetracyclines by rice (Oryza sativa L.)
    Boonsaner, M.
    Hawker, D. W.
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2012, 78 : 142 - 147
  • [3] Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil
    Patompong Saengwilai
    Weeradej Meeinkuirt
    John Pichtel
    Preeyaporn Koedrith
    Environmental Science and Pollution Research, 2017, 24 : 15756 - 15767
  • [4] BIOCHAR AMENDMENT ALLEVIATES CADMIUM IN CONTAMINATED SOIL AND IMPROVES NUTRIENT UPTAKE IN RICE (Oryza sativa L.)
    Devanand
    Sharma, Pramod Kumar
    Kumar, Vipin
    Sarvajeet, And
    APPLIED BIOLOGICAL RESEARCH, 2020, 22 (03) : 285 - 292
  • [5] Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil
    Bingkui Yin
    Liqiang Zhou
    Bin Yin
    Liang Chen
    Journal of Soils and Sediments, 2016, 16 : 537 - 546
  • [6] Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil
    Yin, Bingkui
    Zhou, Liqiang
    Yin, Bin
    Chen, Liang
    JOURNAL OF SOILS AND SEDIMENTS, 2016, 16 (02) : 537 - 546
  • [7] Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water
    Abedin, MJ
    Cotter-Howells, J
    Meharg, AA
    PLANT AND SOIL, 2002, 240 (02) : 311 - 319
  • [8] Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water
    Md. Joinal Abedin
    J. Cotter-Howells
    Andy A. Meharg
    Plant and Soil, 2002, 240 : 311 - 319
  • [9] Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil
    Muhammad Rizwan
    Shafaqat Ali
    Tahir Abbas
    Muhammad Zia ur Rehman
    Mohammad I. Al-Wabel
    Arabian Journal of Geosciences, 2018, 11
  • [10] Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil
    Rizwan, Muhammad
    Ali, Shafaqat
    Abbas, Tahir
    Rehman, Muhammad Zia Ur
    Al-Wabel, Mohammad I.
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (20)