ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN

被引:4
|
作者
Rogalski, D. [1 ]
Sierra, S. J. [2 ]
Stafford, J. T. [3 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
美国国家科学基金会;
关键词
Noetherian ring; twisted homogeneous coordinate ring; Sklyanin algebra; supernoetherian ring; PROJECTIVE SURFACES; DIMENSION-3; DOMAINS; CURVES; RINGS;
D O I
10.1090/S0002-9939-2014-12052-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property.
引用
收藏
页码:2983 / 2990
页数:8
相关论文
共 50 条