INVARIANT YANG-MILLS CONNECTIONS OVER NON-REDUCTIVE PSEUDO-RIEMANNIAN HOMOGENEOUS SPACES

被引:10
|
作者
The, Dennis [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Yang-Mills; invariant connection; Lie groups; non-reductive; pseudo-Riemannian; homogeneous space; SYMMETRIC CRITICALITY; GAUGE-FIELDS; PRINCIPLE; EQUATIONS; REDUCTION; GEOMETRY; BUNDLES;
D O I
10.1090/S0002-9947-09-04797-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study invariant gauge fields over the 4-dimensional non-reductive pseudo-Riemannian homogeneous spaces G/K recently classified by Fels and Renner (2006). Given H compact semi-simple, classification results are obtained for principal H-bundles over G/K admitting: (1) a G-action (by bundle automorphisms) projecting to left multiplication on the base, and (2) at least one G-invariant connection. There are two cases which admit non-trivial examples of such bundles, and all G-invariant connections on these bundles are Yang-Mills. The validity of the principle of symmetric criticality (PSC) is investigated in the context of the bundle of connections and is shown to fail for all but one of the Fels-Renner cases. This failure arises from degeneracy of the scalar product on pseudo-tensorial forms restricted to the space of symmetric variations of an invariant connection. In the exceptional case where PSC is valid, there is a unique G-invariant connection which is moreover universal; i.e., it is the solution of the Euler-Lagrange equations associated to any G-invariant Lagrangian on the bundle of connections. This solution is a canonical connection associated with a weaker notion of reductivity which we introduce.
引用
收藏
页码:3879 / 3914
页数:36
相关论文
共 50 条
  • [1] Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds
    Giovanni Calvaruso
    Amirhesam Zaeim
    Revista Matemática Complutense, 2015, 28 : 599 - 622
  • [2] Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (03): : 599 - 622
  • [3] Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four
    Fels, ME
    Renner, AG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (02): : 282 - 311
  • [4] Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds
    Calvaruso, Giovanni
    Fino, Anna
    Zaeim, Amirhesam
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (01): : 23 - 64
  • [5] Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds
    Giovanni Calvaruso
    Anna Fino
    Amirhesam Zaeim
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 : 23 - 64
  • [6] Reductive homogeneous pseudo-Riemannian manifolds
    Pedro M. Gadea
    José A. Oubiña
    Monatshefte für Mathematik, 1997, 124 : 17 - 34
  • [7] Reductive homogeneous pseudo-Riemannian manifolds
    Gadea, PM
    Oubina, JA
    MONATSHEFTE FUR MATHEMATIK, 1997, 124 (01): : 17 - 34
  • [8] Non-reductive Homogeneous Spaces Not Admitting Normal Connections
    Mozhey, N. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (03): : 284 - 296
  • [9] Naturally reductive pseudo-Riemannian spaces
    Ovando, Gabriela P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 157 - 171
  • [10] Four-dimensional Naturally Reductive Pseudo-Riemannian Homogeneous Spaces
    De Leo, Barbara
    KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (01): : 1 - 11