Graph-Based Optimization with Tubularity Markov Tree for 3D Vessel Segmentation

被引:11
|
作者
Zhu, Ning [1 ]
Chung, Albert C. S. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Lo Kwee Seong Med Image Anal Lab, Hong Kong, Hong Kong, Peoples R China
关键词
EXTRACTION; CURVES; IMAGES; PATHS; CUTS;
D O I
10.1109/CVPR.2013.288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a graph-based method for 3D vessel tree structure segmentation based on a new tubularity Markov tree model (TMT), which works as both new energy function and graph construction method. With the help of power-watershed implementation [7], a global optimal segmentation can be obtained with low computational cost. Different with other graph-based vessel segmentation methods, the proposed method does not depend on any skeleton and ROI extraction method. The classical issues of the graph-based methods, such as shrinking bias and sensitivity to seed point location, can be solved with the proposed method thanks to vessel data fidelity obtained with TMT. The proposed method is compared with some classical graph-based image segmentation methods and two up-to-date 3D vessel segmentation methods, and is demonstrated to be more accurate than these methods for 3D vessel tree segmentation. Although the segmentation is done without ROI extraction, the computational cost for the proposed method is low (within 20 seconds for 256*256*144 image).
引用
收藏
页码:2219 / 2226
页数:8
相关论文
共 50 条
  • [1] Graph-based learning for segmentation of 3D ultrasound images
    Chang, Huali
    Chen, Zhenping
    Huang, Qinghua
    Shi, Jun
    Li, Xuelong
    NEUROCOMPUTING, 2015, 151 : 632 - 644
  • [2] Graph-Based Semantic Segmentation for 3D Digital Images
    Burdescu, Dumitru Dan
    Brezovan, Marius
    Stanescu, Liana
    Spahiu, Cosmin Stoica
    Ebanca, Daniel Costin
    2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), 2017, : 114 - 119
  • [3] A Graph-Based Segmentation Method for 3D Ultrasound Images
    Zheng, Lifang
    Huang, Qinghua
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 4001 - 4005
  • [4] Graph-Based 3D Building Semantic Segmentation for Sustainability Analysis
    Bo Mao
    Bingchan Li
    Journal of Geovisualization and Spatial Analysis, 2020, 4
  • [5] Graph-Based 3D Building Semantic Segmentation for Sustainability Analysis
    Mao, Bo
    Li, Bingchan
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2020, 4 (01)
  • [6] Graph-based Ground Segmentation of 3D LIDAR in Rough Area
    Zhu, Zhu
    Liu, Jilin
    2014 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR PRACTICAL ROBOT APPLICATIONS (TEPRA), 2014,
  • [7] Graph-based Segmentation for Colored 3D Laser Point Clouds
    Strom, Johannes
    Richardson, Andrew
    Olson, Edwin
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, : 2131 - 2136
  • [8] A graph-based technique for semi-supervised segmentation of 3D surfaces
    Bergamasco, Filippo
    Albarelli, Andrea
    Torsello, Andrea
    PATTERN RECOGNITION LETTERS, 2012, 33 (15) : 2057 - 2064
  • [9] 3D graph-based vision-SLAM registration and optimization
    A.-Latif, Doaa M.
    Salem, Mohammed A.-Megeed
    Ramadan, H.
    Roushdy, Mohamed I.
    International Journal of Circuits, Systems and Signal Processing, 2014, 8 : 123 - 130
  • [10] 3D Mesh Segmentation Based on Markov Random Fields and Graph Cuts
    Shi, Zhenfeng
    Le, Dan
    Yu, Liyang
    Niu, Xiamu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (02): : 703 - 706