APPLICATION OF ARTIFICIAL NEURAL NETWORKS AND PARTICLE SWARM OPTIMIZATION FOR TIMBER EXTRACTION WITH CABLE CRANE

被引:3
|
作者
Caliskan, E. [1 ]
机构
[1] Karadeniz Tech Univ, Fac Forestry, Dept Forest Engn, TR-61080 Trabzon, Turkey
来源
关键词
forest operations; timber extraction; total time; artificial neural networks; particle swarm optimization; multiple regression analysis; TREE BOLE VOLUME; SYSTEM;
D O I
10.15666/aeer/1702_23392355
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The fact that forest areas in Turkey and the world are located at high and steep mountainous areas makes it more difficult to extraction the wood raw material. Therefore, the retreat of forest areas to mountainous areas has brought cable crane to the forefront. Thus, it has become possible to solve complex problems by way of artificial intelligence techniques. The purpose of this study was to determine the impact of factors related with timber extraction via URUSMIII cable crane on total time via Artificial Neural Network (ANN), Particle Swarm Optimization (PSO) and Multiple Regression Analysis (MRA). The data were obtained from oriental spruce timbers which were acquired from spruce stands in the Artvin Forest Directorate, located at NE Turkey. The factors with impact on total time (ground slope, line slope, lateral pull, number of logs, diameter of logs, length of logs, log volume, yarding distance) were measured along with the total time. Determination coefficient (R) and the expressions that indicate error variance (MSE, RMSE and MAE) were taken into consideration for determining the model with the best results. PSO model was determined as the best structure (R = 0.85 MSE = 0.0143, RMSE = 0.1194, MAE = 0.0839): in this study according to the obtained results. The results indicate that PSO had the best performance in the study followed by ANN and finally MRA with the lowest performance. The PSO model can be used for similar conditions on the planning of forest operation, the control of applications and the determination of unit of price for forest workers.
引用
收藏
页码:2339 / 2355
页数:17
相关论文
共 50 条
  • [1] Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources
    Gaur, Shishir
    Ch, Sudheer
    Graillot, Didier
    Chahar, B. R.
    Kumar, D. Nagesh
    WATER RESOURCES MANAGEMENT, 2013, 27 (03) : 927 - 941
  • [2] Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources
    Shishir Gaur
    Sudheer Ch
    Didier Graillot
    B. R. Chahar
    D. Nagesh Kumar
    Water Resources Management, 2013, 27 : 927 - 941
  • [3] Application of Particle Swarm Optimization in Fussy Neural Networks
    Wang, Qingnian
    Yan, Kun
    Wan, Xiaofeng
    Yuan, Meiling
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION ASSURANCE AND SECURITY, VOL 1, PROCEEDINGS, 2009, : 158 - 161
  • [4] A hybrid particle swarm optimization and its application in neural networks
    Leung, S. Y. S.
    Tang, Yang
    Wong, W. K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 395 - 405
  • [5] A hybrid artificial neural networks and particle swarm optimization for function approximation
    Su, Tejen
    Jhang, Jyunwei
    Hou, Chengchih
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (09): : 2363 - 2374
  • [6] An Improved Particle Swarm Optimization for Evolving Feedforward Artificial Neural Networks
    Jianbo Yu
    Lifeng Xi
    Shijin Wang
    Neural Processing Letters, 2007, 26 : 217 - 231
  • [7] An improved particle swarm optimization for evolving feedforward artificial neural networks
    Yu, Jianbo
    Xi, Lifeng
    Wang, Shijin
    NEURAL PROCESSING LETTERS, 2007, 26 (03) : 217 - 231
  • [8] Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
    Garro, Beatriz A.
    Vazquez, Roberto A.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [9] APPLICATION OF PARTICLE SWARM OPTIMIZATION ALGORITHM IN PROCESS OF ARTIFICIAL NEURAL NETWORKS TRAINING FOR SHORT TERM FORECASTING
    Baczynski, Dariusz
    RYNEK ENERGII, 2010, (04): : 52 - 56
  • [10] Business rules management improvement through the application of Particle Swarm Optimization algorithm and Artificial Neural Networks
    Nenortaite, Jovita
    Butleris, Rimantas
    INFORMATION TECHNOLOGIES' 2008, PROCEEDINGS, 2008, : 84 - 90