Curvature of n-dimensional space curves in grey-value images

被引:0
|
作者
Rieger, B [1 ]
van Vliet, LJ [1 ]
机构
[1] Delft Univ Technol, Dept Appl Phys, Pattern Recognit Grp, NL-2628 Delft, Netherlands
关键词
curvature; gradient structure tensor; Knutsson mapping; space curves in n-D;
D O I
10.1109/TIP.2002.800885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local curvature represents an important shape parameter of space curves which are well described by differential geometry. We have developed an estimator for local curvature of space curves embedded in n-dimensional (n-D) grey-value images. There is neither a segmentation of the curve needed nor a parametric model assumed. Our estimator works on the orientation field of the space curve. This orientation field and a description of local structure is obtained by the gradient structure tensor. The orientation field has discontinuities; walking around a closed contour yields two such discontinuities in orientation. This field is mapped via the Knutsson mapping to a continuous representation; from a n-D vector to a symmetric n(2)-D tensor field. The curvature of a space curve, a coordinate invariant property, is computed in this tensor field representation. An extensive evaluation shows that our curvature estimation is unbiased even in the presence of noise, independent of the scale of the object and furthermore the relative error stays small.
引用
收藏
页码:738 / 745
页数:8
相关论文
共 50 条
  • [1] Curvature estimation of surfaces in 3D grey-value images
    Rieger, B
    Timmermans, FJ
    van Vliet, LJ
    Verbeek, PW
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 684 - 687
  • [2] Curvature estimation of surfaces in 3D grey-value images
    Rieger, B.
    Timmermans, F.J.
    Van Vliet, L.J.
    Verbeek, P.W.
    Proceedings - International Conference on Pattern Recognition, 2002, 16 (01): : 684 - 687
  • [3] Estimation of curvature based shape properties of surfaces in 3D grey-value images
    Rieger, B
    van Vliet, LJ
    Verbeek, PW
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 262 - 267
  • [4] Rectifying curves in the n-dimensional Euclidean space
    Cambie, Stijn
    Goemans, Wendy
    Van den Bussche, Iris
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 210 - 223
  • [5] Normal curves in n-dimensional Euclidean space
    Özcan Bektaş
    Advances in Difference Equations, 2018
  • [6] Normal curves in n-dimensional Euclidean space
    Bektas, Ozcan
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [7] Closed curves in n-dimensional discrete space
    Thürmer, G
    GRAPHICAL MODELS, 2003, 65 (1-3) : 43 - 60
  • [8] MOTIONS OF CARTAN CURVES IN n-DIMENSIONAL MINKOWSKI SPACE
    Li, Yan-Yan
    MODERN PHYSICS LETTERS A, 2013, 28 (27)
  • [9] INTEGRAL CURVATURE OF A CURVE IN N-DIMENSIONAL EUCLIDEAN-SPACE
    ALEKSANDROV, AD
    RESHETNYAK, YG
    SIBERIAN MATHEMATICAL JOURNAL, 1988, 29 (01) : 1 - 16
  • [10] A maximally superintegrable system on an n-dimensional space of nonconstant curvature
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) : 505 - 509