DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning

被引:37
|
作者
Li, Qiaoliang [1 ]
Li, Shiyu [1 ]
He, Zhuoying [1 ]
Guan, Huimin [1 ]
Chen, Runmin [1 ]
Xu, Ying [1 ]
Wang, Tao [1 ]
Qi, Suwen [1 ]
Mei, Jun [2 ]
Wang, Wei [3 ]
机构
[1] Shenzhen Univ, Sch Med, Dept Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound,Guan, Xueyuan Ave, Shenzhen, Guangdong, Peoples R China
[2] Jinan Univ, Med Imaging Dept, Shenzhen Eye Hosp, Shenzhen, Guangdong, Peoples R China
[3] Shenzhen Univ Gen Hosp, Dept Pathol, Shenzhen, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
DeepRetina; retinal layer; auto-segmentation; OCT image; deep neural network; OPTICAL COHERENCE TOMOGRAPHY; AUTOMATIC SEGMENTATION; CLASSIFICATION; BOUNDARIES; KERNEL; FLUID; SETS;
D O I
10.1167/tvst.9.2.61
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. Methods: DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images. Results: We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%. Conclusions: DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice. Translational Relevance: Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] ACUURATE SEGMENTATION OF RETINA NERVE FIBER LAYER IN OCT IMAGES
    Salarian, Mahdi
    Ansari, Rashid
    Wanek, Justin
    Shahidi, Mahnaz
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2015, : 653 - 656
  • [2] Deep Learning for Retina Structural Biomarker Classification Using OCT Images
    Xu, Chi
    Zheng, Huizhong
    Liu, Keyi
    Chen, Yanming
    Ye, Chen
    Niu, Chenxi
    Jin, Shengji
    Li, Yue
    Gao, Haowei
    Hu, Jingxi
    Zou, Yuanhao
    He, Xiangjian
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [3] Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images
    Mao, Xiaoqian
    Zhao, Yitian
    Chen, Bang
    Ma, Yuhui
    Gu, Zaiwang
    Gu, Shenshen
    Yang, Jianlong
    Cheng, Jun
    Liu, Jiang
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1641 - 1645
  • [4] Anomaly Detection Based on Uncertainty of Retinal Layer Boundary Segmentation in OCT Images using Deep Learning
    Miyazaki, Sohei
    Shiba, Ryosuke
    Takeno, Naoki
    Kumagai, Yoshiki
    Sakashita, Yusuke
    Shibata, Naohisa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [5] Automated Segmentation of Microvessels in Intravascular OCT Images Using Deep Learning
    Lee, Juhwan
    Kim, Justin N. N.
    Gomez-Perez, Lia
    Gharaibeh, Yazan
    Motairek, Issam
    Pereira, Gabriel T. R.
    Zimin, Vladislav N. N.
    Dallan, Luis A. P.
    Hoori, Ammar
    Al-Kindi, Sadeer
    Guagliumi, Giulio
    Bezerra, Hiram G. G.
    Wilson, David L. L.
    BIOENGINEERING-BASEL, 2022, 9 (11):
  • [6] Automatic choroidal segmentation in OCT images using supervised deep learning methods
    Kugelman, Jason
    Alonso-Caneiro, David
    Read, Scott A.
    Hamwood, Jared
    Vincent, Stephen J.
    Chen, Fred K.
    Collins, Michael J.
    SCIENTIFIC REPORTS, 2019, 9
  • [7] Automatic choroidal segmentation in OCT images using supervised deep learning methods
    Jason Kugelman
    David Alonso-Caneiro
    Scott A. Read
    Jared Hamwood
    Stephen J. Vincent
    Fred K. Chen
    Michael J. Collins
    Scientific Reports, 9
  • [8] Deep choroid layer segmentation using hybrid features extraction from OCT images
    Saleha Masood
    Saba Ghazanfar Ali
    Xiangning Wang
    Afifa Masood
    Ping Li
    Huating Li
    Younhyun Jung
    Bin Sheng
    Jinman Kim
    The Visual Computer, 2024, 40 : 2775 - 2792
  • [9] Deep choroid layer segmentation using hybrid features extraction from OCT images
    Masood, Saleha
    Ali, Saba Ghazanfar
    Wang, Xiangning
    Masood, Afifa
    Li, Ping
    Li, Huating
    Jung, Younhyun
    Sheng, Bin
    Kim, Jinman
    VISUAL COMPUTER, 2024, 40 (04): : 2775 - 2792
  • [10] Deep learning network with differentiable dynamic programming for retina OCT surface segmentation
    Xie, Hui
    Xu, Weiyu
    Xing, Ya Xing
    Wu, Xiaodong
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (07) : 3190 - 3202