A volume averaged global model study of the influence of the electron energy distribution and the wall material on an oxygen discharge

被引:18
|
作者
Toneli, D. A. [1 ]
Pessoa, R. S. [1 ,2 ]
Roberto, M. [1 ]
Gudmundsson, J. T. [3 ,4 ]
机构
[1] Techonol Inst Aeronaut, Dept Phys, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Paraiba Valley Univ, Inst Res & Dev, BR-12244000 Sao Jose Dos Campos, SP, Brazil
[3] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
[4] KTH Royal Inst Technol, Dept Space & Plasma Phys, Sch Elect Engn, SE-10044 Stockholm, Sweden
基金
巴西圣保罗研究基金会;
关键词
oxygen discharge; weakly ionized plasma; electronegativity; electron energy distribution function; volume averaged global model; CROSS-SECTIONS; METASTABLE OXYGEN; PLASMA PARAMETERS; IMPACT; CHEMISTRY; ARGON; RECOMBINATION; DEACTIVATION; DISSOCIATION; IONIZATION;
D O I
10.1088/0022-3727/48/49/495203
中图分类号
O59 [应用物理学];
学科分类号
摘要
A low pressure high density oxygen discharge is studied through a global (volume averaged) model in the pressure range 0.5-100 mTorr. The goal of this work is to evaluate the dependence of collisional energy loss per electron-ion pair created, effective electron temperature, mean density of species, and mean electronegativity on the electron energy distribution function. Differences in the results for Maxwellian and non-Maxwellian distributions show the importance of using a proper electron energy distribution function in discharge modelling. We also explore the differences due to different reactor wall materials comparing the results for an anodized aluminium reactor with a stainless steel reactor. Due to the low recombination coefficient for oxygen atoms on the anodized aluminium walls, the yield of atomic oxygen in anodized aluminium reactors increases significantly as compared to stainless steel reactors. However, the difference of the yield of atomic oxygen in these reactors decreases as pressure increases. Thus, anodized aluminium reactors can be desired for applications where a high concentration of atomic oxygen is required. Finally, the importance of quenching coefficient for plasma modelling is stressed through the quenching coefficient at the walls for O-2(b(1)Sigma(+)(g)). Low quenching coefficients result in high densities of O-2(b(1)Sigma(+)(g)) affecting the mean electronegativity of the plasma due to the decrease in the density of O-2(-).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study
    Gudmundsson, JT
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2001, 10 (01): : 76 - 81
  • [2] A global (volume averaged) model of a chlorine discharge
    Thorsteinsson, E. G.
    Gudmundsson, J. T.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (01):
  • [3] A global (volume averaged) model of a nitrogen discharge: I. Steady state
    Thorsteinsson, E. G.
    Gudmundsson, J. T.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (04):
  • [4] Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution
    Denysenko, I
    Yu, MY
    Ostrikov, K
    Smolyakov, A
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [5] A global (volume averaged) model of a nitrogen discharge: II. Pulsed power modulation
    Thorsteinsson, E. G.
    Gudmundsson, J. T.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (04):
  • [6] The influence of the electron energy distribution on the low pressure chlorine discharge
    Gudmundsson, J. T.
    Hjartarson, A. T.
    Thorsteinsson, E. G.
    VACUUM, 2012, 86 (07) : 808 - 812
  • [7] A global (volume averaged) model of a Cl2/Ar discharge: I. Continuous power
    Thorsteinsson, E. G.
    Gudmundsson, J. T.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (11)
  • [8] A global (volume averaged) model of a Cl2/Ar discharge: II. Pulsed power modulation
    Thorsteinsson, E. G.
    Gudmundsson, J. T.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (11)
  • [9] Beam electron energy distribution at a volume nanosecond discharge in atmospheric-pressure air
    V. F. Tarasenko
    I. D. Kostyrya
    V. K. Petin
    S. V. Shlyakhtun
    Technical Physics, 2006, 51 : 1576 - 1585
  • [10] Beam electron energy distribution at a volume nanosecond discharge in atmospheric-pressure air
    Tarasenko, V. F.
    Kostyrya, I. D.
    Petin, V. K.
    Shlyakhtun, S. V.
    TECHNICAL PHYSICS, 2006, 51 (12) : 1576 - 1585