On estimating extremal dependence structures by parametric spectral measures

被引:3
|
作者
Beran, Jan [1 ]
Mainik, Georg [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, Constance, Germany
[2] Swiss Fed Inst Technol, Dept Math, RiskLab, Zurich, Switzerland
关键词
Extreme value copula; Spectral measure; Parametric model; Estimation; Asymptotic distribution; NONPARAMETRIC-ESTIMATION;
D O I
10.1016/j.stamet.2014.02.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of extreme value copulas is often required in situations where available data are sparse. Parametric methods may then be the preferred approach. A possible way of defining parametric families that are simple and, at the same time, cover a large variety of multivariate extremal dependence structures is to build models based on spectral measures. This approach is considered here. Parametric families of spectral measures are defined as convex hulls of suitable basis elements, and parameters are estimated by projecting an initial nonparametric estimator on these finite-dimensional spaces. Asymptotic distributions are derived for the estimated parameters and the resulting estimates of the spectral measure and the extreme value copula. Finite sample properties are illustrated by a simulation study. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Measures of serial extremal dependence and their estimation
    Davis, Richard A.
    Mikosch, Thomas
    Zhao, Yuwei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (07) : 2575 - 2602
  • [2] Estimating the extremal index through local dependence
    Ferreira, Helena
    Ferreira, Marta
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 587 - 605
  • [3] ESTIMATING MULTIVARIATE EXTREMAL DEPENDENCE: A NEW PROPOSAL
    Ferreira, M.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 93 : 156 - 162
  • [4] The extremal spectral radii of the arithmetical structures on paths
    Wang, Dijian
    Hou, Yaoping
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [5] Domination of sample maxima and related extremal dependence measures
    Hashorva, Enkelejd
    DEPENDENCE MODELING, 2018, 6 (01): : 88 - 101
  • [6] Regionalization of the extremal dependence structure using spectral clustering
    Maume-Deschamps, Veronique
    Ribereau, Pierre
    Zeidan, Manal
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, 39 (02) : 725 - 745
  • [7] Towards estimating extremal serial dependence via the bootstrapped extremogram
    Davis, Richard A.
    Mikosch, Thomas
    Cribben, Ivor
    JOURNAL OF ECONOMETRICS, 2012, 170 (01) : 142 - 152
  • [8] Parametric spectral correlations in disordered and chaotic structures
    Smolyarenko, IE
    Marchetti, FM
    Simons, BD
    PHYSICAL REVIEW LETTERS, 2002, 88 (25)
  • [9] EXTREMAL DILATIONS AND THEIR ASSOCIATED EXTREMAL MEASURES
    ROY, AK
    JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (01) : 8 - 31
  • [10] A PARAMETRIC MODEL FOR ESTIMATING FUZZY POVERTY MEASURES AND THEIR STANDARD ERRORS
    Betti, Gianni
    D'Agostino, Antonella
    Lemmi, Achille
    Quintano, Claudio
    POLITICA ECONOMICA, 2009, 25 (03) : 279 - 299