Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector

被引:139
|
作者
Hasan, Husam Abdulrasool [1 ]
Sopian, Kamaruzzaman [1 ]
Jaaz, Ahed Hameed [1 ]
Al-Shamani, Ali Najah [1 ,2 ]
机构
[1] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[2] Furat Awsat Tech Univ, Al Musaib Tech Coll, Babylon 51009, Iraq
关键词
Photovoltaic thermal (PVT) collectors; Nanofluid; Electrical performance; Thermal performance; Jet impingement; THERMAL SOLAR-SYSTEM; HEATING-SYSTEM; PERFORMANCE ANALYSIS; COOLING DEVICE; MODEL; VALIDATION; SIMULATION; TRANSPORT; DESIGN; SHEET;
D O I
10.1016/j.solener.2017.01.036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effect of nanoparticles (SiC, TiO2 and SiO2) with water as its base fluid on the electrical and thermal performance of a photovoltaic thermal (PVT) collector equipped with jet impingement have been investigated. A PVT collector was tested indoor at set levels of solar irradiances and mass flow rates. The system consists of four parallel tubes and 36 nozzles that directly injects the fluid to the back of the PVT collector. The electrical performance of the PVT collector was determined based on the mean temperature of the PVT absorber plate. The SiC/water nanofluid system reported the highest electrical and thermal efficiency. The electrical, thermal, and combined photovoltaic thermal efficiencies were 12.75%, 85%, and 97.75%, respectively, at a solar irradiance of 1000 W/m(2) and flow rate of 0.167 kg/s and ambient temperature of about 30 degrees C. Moreover, the P-max of PVT with SiC nanofluid increased by 62.5% compared to the conventional PV module. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 50 条
  • [1] Investigation of Thermal Collector Nanofluids to Increase the Efficiency of Photovoltaic Solar Cells
    Prasetyo, Singgih Dwi
    Prabowo, Aditya Rio
    Arifin, Zainal
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (02) : 415 - 422
  • [2] Performance investigation on photovoltaic thermal collector by using zinc oxide nanofluids
    Poyyamozhi, N.
    Muthukannan, M.
    Chandrakumar, P.
    Srimanickam, B.
    Elangovan, K.
    Interactions, 2024, 245 (01)
  • [3] An Experimental Performance on Solar Photovoltaic Thermal Collector with Nanofluids for Sustainable Development
    Gundala, Srinivasulu
    Basha, M. Mahaboob
    Madhurima, V.
    Praveena, N.
    Kumar, S. Venkatesh
    Journal of Nanomaterials, 2021, 2021
  • [4] An Experimental Performance on Solar Photovoltaic Thermal Collector with Nanofluids for Sustainable Development
    Gundala, Srinivasulu
    Basha, M. Mahaboob
    Madhurima, V
    Praveena, N.
    Kumar, S. Venkatesh
    JOURNAL OF NANOMATERIALS, 2021, 2021
  • [5] Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling
    Javidan, Mohammad
    Moghadam, Ali Jabari
    Energy Conversion and Management, 2021, 228
  • [6] Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling
    Javidan, Mohammad
    Moghadam, Ali Jabari
    ENERGY CONVERSION AND MANAGEMENT, 2021, 228
  • [7] EXPERIMENTAL INVESTIGATION OF A FLAT PLATE PHOTOVOLTAIC/THERMAL COLLECTOR
    Modrek, Mohamad
    Ai-Alili, Ali
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2018, 2018,
  • [8] Confined Jet Array Impingement Cooling using NEPCM Nanofluids
    Hong, F. J.
    Zhang, C. Y.
    Chen, D. H.
    Chen, G.
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 1, 2016,
  • [9] EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THERMAL PERFORMANCE OF SYNTHETIC JET IMPINGEMENT
    Singh, Pushpanjay K.
    Kothari, Rohit
    Sahu, Santosh K.
    Upadhyay, Prabhat K.
    Singh, Shashwat
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE2020), VOL 1, 2020,
  • [10] The Water Based Photovoltaic Thermal Fiberglass Collector: An Experimental Investigation
    Mustafa, Wan
    Fudholi, Ahmad
    Sopian, Kamaruzzaman
    Mustapha, Muslizainun
    Ahmudiarto, Yoyon
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2021, 11 (04): : 1663 - 1672