Prediction of antiepileptic drug treatment outcomes of patients with newly diagnosed epilepsy by machine learning
被引:45
|
作者:
Yao, Lijun
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R ChinaTongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
Yao, Lijun
[1
]
Cai, Mengting
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Neurol,Epilepsy Ctr, Hangzhou 310009, Zhejiang, Peoples R ChinaTongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
Cai, Mengting
[2
]
论文数: 引用数:
h-index:
机构:
Chen, Yang
[3
]
Shen, Chunhong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Neurol,Epilepsy Ctr, Hangzhou 310009, Zhejiang, Peoples R ChinaTongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
Shen, Chunhong
[2
]
Shi, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Comp Sci, Inst Software, Beijing 100080, Peoples R ChinaTongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
Shi, Lei
[4
]
Guo, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Neurol,Epilepsy Ctr, Hangzhou 310009, Zhejiang, Peoples R ChinaTongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
Guo, Yi
[2
]
机构:
[1] Tongji Univ, Shanghai Pudong New Area Mental Hlth Ctr, Sch Med, Shanghai 200124, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Neurol,Epilepsy Ctr, Hangzhou 310009, Zhejiang, Peoples R China
[3] Fudan Univ, Sch Comp Sci, Shanghai 201203, Peoples R China
[4] Chinese Acad Sci, State Key Lab Comp Sci, Inst Software, Beijing 100080, Peoples R China
Objective: The objective of this study was to build a supervised machine learning-based classifier, which can accurately predict the outcomes of antiepileptic drug (AED) treatment of patients with newly diagnosed epilepsy. Methods: We collected information from 287 patients with newly diagnosed epilepsy between 2009 and 2017 at the Second Affiliated Hospital of Zhejiang University. Patients were prospectively followed up for at least 3 years. A number of features, including demographic features, medical history, and auxiliary examinations (electroencephalogram [EEG] and magnetic resonance imaging [MRI]) are selected to distinguish patients with different remission outcomes. Seizure outcomes classified as remission and never remission. In addition, remission is further divided into early remission and late remission. Five classical machine learning algorithms, i.e., Decision Tree, Random Forest, Support Vector Machine, XGBoost, and Logistic Regression, are selected and trained by our dataset to get classification models. Results: Our study shows that 1) compared with the other four algorithms, the XGBoost algorithm based machine learning model achieves the best prediction performance of the AED treatment outcomes between remission and never remission patients with an F1 score of 0.947 and an area under the curve (AUC) value of 0.979: 2) The best discriminative factor for remission and never remission patients is higher number of seizures before treatment (>3); 3) XGBoost-based machine learning model also offers the best prediction between early remission and later remission patients, with an F1 score of 0.836 and an AUC value of 0.918; 4) multiple seizure type has the highest dependence to the categories of early and late remission patients. Significances: Our XGBoost-based machine learning classifier accurately predicts the most probable AED treatment outcome of a patient after he/she finishes all the standard examinations for the epilepsy disease. The classifier's prediction result could help disease guide counseling and eventually improve treatment strategies. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Publ Healthcare Serv Comm Adm, SE-11891 Stockholm, SwedenPubl Healthcare Serv Comm Adm, SE-11891 Stockholm, Sweden
Karlsson, Linnea
Wettermark, Bjorn
论文数: 0引用数: 0
h-index: 0
机构:
Publ Healthcare Serv Comm Adm, SE-11891 Stockholm, Sweden
Karolinska Univ Hosp Solna, SE-17176 Stockholm, SwedenPubl Healthcare Serv Comm Adm, SE-11891 Stockholm, Sweden
Wettermark, Bjorn
Tomson, Torbjorn
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Clin Neurosci, SE-17177 Stockholm, SwedenPubl Healthcare Serv Comm Adm, SE-11891 Stockholm, Sweden
机构:
Cincinnati Childrens Hosp Med Ctr, Div Behav Med & Clin Psychol, Cincinnati, OH 45229 USACincinnati Childrens Hosp Med Ctr, Div Behav Med & Clin Psychol, Cincinnati, OH 45229 USA
Modi, Avani C.
Rausch, Joseph R.
论文数: 0引用数: 0
h-index: 0
机构:
Cincinnati Childrens Hosp Med Ctr, Div Behav Med & Clin Psychol, Cincinnati, OH 45229 USACincinnati Childrens Hosp Med Ctr, Div Behav Med & Clin Psychol, Cincinnati, OH 45229 USA
Rausch, Joseph R.
Glauser, Tracy A.
论文数: 0引用数: 0
h-index: 0
机构:
Cincinnati Childrens Hosp Med Ctr, Div Neurol, Cincinnati, OH 45229 USACincinnati Childrens Hosp Med Ctr, Div Behav Med & Clin Psychol, Cincinnati, OH 45229 USA
Glauser, Tracy A.
[J].
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION,
2011,
305
(16):
: 1669
-
1676
机构:
Prince Sattam bin Abdulaziz Univ, Dept Radiol & Med Imaging, Al Kharj, Saudi ArabiaUniv Liverpool, Inst Translat Med, Liverpool, Merseyside, England
Alonazi, B. K.
Taylor, J. A.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Neurol, Charleston, SC 29425 USAUniv Liverpool, Inst Translat Med, Liverpool, Merseyside, England
Taylor, J. A.
Bonilha, L.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Neurol, Charleston, SC 29425 USAUniv Liverpool, Inst Translat Med, Liverpool, Merseyside, England
Bonilha, L.
McKinnon, E. T.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Neurol, Charleston, SC 29425 USA
Med Univ South Carolina, Dept Neurosci, Charleston, SC 29425 USAUniv Liverpool, Inst Translat Med, Liverpool, Merseyside, England
McKinnon, E. T.
Jensen, J. H.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Neurosci, Charleston, SC 29425 USAUniv Liverpool, Inst Translat Med, Liverpool, Merseyside, England