Asymptotic stability of a mathematical model of cell population

被引:0
|
作者
Negreanu, Mihaela [1 ]
Ignacio Tello, J. [2 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] EUI Univ Politecn Madrid, Dept Matemat Aplicada, Madrid 28031, Spain
关键词
Free boundary problem; Stability; Comparison method; Asymptotic behavior; REACTION-DIFFUSION SYSTEMS; CHEMOTAXIS; CANCER;
D O I
10.1016/j.jmaa.2014.02.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:963 / 971
页数:9
相关论文
共 50 条
  • [1] EXISTENCE, UNIQUENESS, STABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A MATHEMATICAL MODEL OF ATHEROSCLEROSIS
    Silva, Telma
    Sequeira, Adelia
    Santos, Rafael F.
    Tiago, Jorge
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 343 - 362
  • [2] Asymptotic behaviour of a mathematical model of hematopoietic stem cell dynamics
    Adimy, M.
    Angulo, O.
    Lopez-Marcos, J. C.
    Lopez-Marcos, M. A.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 198 - 208
  • [3] Asymptotic stability in a mosquito population suppression model with time delay
    Hui, Yuanxian
    Zhao, Zhong
    Li, Qiuying
    Pang, Liuyong
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (04)
  • [4] ASYMPTOTIC STABILITY FOR TWO NONLINEAR MATHEMATICAL MODELS STEMMING FROM CELL POPULATIONS
    Liang, Xiao
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 625 - 637
  • [5] ASYMPTOTIC STABILITY OF THE STATIONARY SOLUTION FOR A NEW MATHEMATICAL MODEL OF CHARGE TRANSPORT IN SEMICONDUCTORS
    Blokhin, A. M.
    Tkachev, D. L.
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (02) : 357 - 382
  • [6] MATHEMATICAL-ANALYSIS OF ASYMPTOTIC-BEHAVIOR OF LESLIE POPULATION MATRIX MODEL
    CULL, P
    VOGT, A
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1973, 35 (5-6) : 645 - 661
  • [7] ASYMPTOTIC BEHAVIOUR FOR A MATHEMATICAL CELLULAR MODEL WITH INFINITE CELL CYCLE LENGTH
    Boulanouar, M.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2009, 3 (01): : 77 - 101
  • [8] Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch
    Crauste, F.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2009, 4 (02) : 28 - 47
  • [9] Stability Behaviour of Mathematical Model MERS Corona Virus Spread in Population
    Tahir, Muhammad
    Shah, Syed Inayat Ali
    Zaman, Gul
    Khan, Tahir
    [J]. FILOMAT, 2019, 33 (12) : 3947 - 3960
  • [10] GLOBAL ASYMPTOTIC STABILITY FOR GURTIN-MACCAMY'S POPULATION DYNAMICS MODEL
    Ma, Zhaohai
    Magal, Pierre
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 765 - 780