Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide)

被引:127
|
作者
Zhang, Jie [1 ]
Wang, Li-Qun [1 ]
Wang, Hongjun [1 ]
Tu, Kehua [1 ]
机构
[1] Zhejiang Univ, Inst Polymer Sci, Hangzhou 310027, Peoples R China
关键词
D O I
10.1021/bm0601732
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study focuses on the aggregation behavior of the biodegradable amphiphilic block copolymers based on methoxy poly(ethylene glycol) (mPEG) as a hydrophilic block and either crystalline poly(caprolactone-b-L-lactide) (P(CL-LLA)) or amorphous poly(caprolactone-b-D, L-lactide) (P(CL-DLLA)) as a hydrophobic block. These block copolymers have a strong tendency to form micelles in aqueous medium, with very low critical micelle concentrations (CMCs). The CMC of P(CL-LLA)-b-mPEG is higher than that of P(CL-DLLA)-b-mPEG when the mPEG block has the same molecular weight. Furthermore, the partition equilibrium coefficient (K-v) of pyrene in the micellar solution of P(CL-LLA)-b-mPEG copolymer was lower than that of P(CL-DLLA)-b-mPEG copolymer when the mPEG block was the same length. These differences were believed to be related to the physical state of the core-forming blocks, i. e., the crystalline P(CL-LLA) block and the amorphous P(CL-DLLA) block. The TEM images showed that micelles formed by P(CL-LLA)-b-mPEG assembled in a cylindrical morphology, whereas those formed by P(CL-DLLA)-b-mPEG took a classical spherical shape. In addition, with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) analyses, it is believed that the crystallization tendency of the core-forming blocks is the main factor governing the morphology of micelles in water. A possible mechanism for the cylindrical assembly morphology was discussed.
引用
收藏
页码:2492 / 2500
页数:9
相关论文
共 50 条
  • [1] Amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide):: Synthesis, solid-state and aqueous solution characterizations
    Zhang, Jie
    Wang, Li-Qun
    Wang, Hongjun
    Tu, Kehua
    Liu, Li
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (02) : 915 - 927
  • [2] Synthesis and micellization of amphiphilic poly(sebacic anhydride)-poly(ethylene glycol)-poly(sebacic anhydride) block copolymers
    Zhang, N
    Guo, SR
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (03) : 1271 - 1278
  • [3] Novel synthesis of biodegradable amphiphilic linear and star block copolymers based on poly(ε-caprolactone) and poly(ethylene glycol)
    Lemmouchi, Yahia
    Perry, Michael C.
    Amass, Allan J.
    Chakraborty, Khirud
    Schacht, Etienne
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (17) : 3975 - 3985
  • [4] Synthesis and characterization of amine-functionalized amphiphilic block copolymers based on poly(ethylene glycol) and poly(caprolactone)
    Remant, Bahadur
    Bhattarai, Shanta Raj
    Aryal, Santosh
    Bhattarai, Narayan
    Lee, Byoung Min
    Kim, Hak Yong
    POLYMER INTERNATIONAL, 2007, 56 (04) : 518 - 524
  • [5] Block copolymers of poly(L-lactide) and poly(Ε-caprolactone) or poly(ethylene glycol) prepared by reactive extrusion
    Univ of Twente, Enschede, Netherlands
    J Appl Polym Sci, 8 (1295-1301):
  • [6] Synthesis and Characterization of Brush Copolymers Based on Methoxy Poly(ethylene glycol) and Poly(ε-caprolactone)
    Bajgai, Madhab Prasad
    Aryal, Santosh
    Parajuli, Darnan Chandra
    Khil, Myung-Seob
    Lee, Duck Rae
    Kim, Hak Yong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 111 (03) : 1540 - 1548
  • [7] Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends
    Na, YH
    He, Y
    Shuai, X
    Kikkawa, Y
    Doi, Y
    Inoue, Y
    BIOMACROMOLECULES, 2002, 3 (06) : 1179 - 1186
  • [8] Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol) poly(L-lactide) block copolymers
    Kim, KS
    Chung, S
    Chin, IJ
    Kim, MN
    Yoon, JS
    JOURNAL OF APPLIED POLYMER SCIENCE, 1999, 72 (03) : 341 - 348
  • [9] Crystallization behavior of biodegradable amphiphilic poly(ethylene glycol)-poly(L-lactide) block copolymers
    Inha Univ, Inchon, Korea, Republic of
    J Appl Polym Sci, 3 (341-348):
  • [10] SYNTHESIS AND CHARACTERIZATION OF POLY(ε-CAPROLACTONE)-POLY(ETHYLENE GLYCOL)-POLY(ε-CAPROLACTONE) COPOLYMERS: INVESTIGATION OF THE EFFECT OF BLOCKS ON MICELLIZATION
    Gokce Kocabay, Ozlem
    Ismail, Osman
    REVUE ROUMAINE DE CHIMIE, 2018, 63 (12) : 1157 - 1167