Index form surfaces and construction of elliptic curves over large finite fields

被引:0
|
作者
Pethö, A [1 ]
机构
[1] Univ Debrecen, Dept Comp Sci, H-4010 Debrecen, Hungary
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Index form equations play an important role in algebraic number theory especially in computing all elements with given discriminant. Using geometric ideas Gaal, Petho and Pohst [4] gave a practical method for the solution of index form equations over quartic number fields. Continuing their investigations we introduce the notion of index form surfaces associated to quartic polynomials and show that they are either empty or elliptic surfaces.
引用
下载
收藏
页码:239 / 247
页数:9
相关论文
共 50 条
  • [1] Construction of rational points on elliptic curves over finite fields
    Shallue, Andrew
    van de Woestijne, Christiaan E.
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 510 - 524
  • [2] Construction of elliptic curves over finite fields with a point of given order
    Wang, Kun-Peng
    Li, Bao
    Ruan Jian Xue Bao/Journal of Software, 2007, 18 (07): : 1774 - 1777
  • [3] Points on elliptic curves over finite fields
    Skalba, M
    ACTA ARITHMETICA, 2005, 117 (03) : 293 - 301
  • [4] QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Achter, Jeffrey D.
    Wong, Siman
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1395 - 1412
  • [5] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 657 - 670
  • [6] Legendre elliptic curves over finite fields
    Auer, R
    Top, J
    JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 303 - 312
  • [7] Orchards in elliptic curves over finite fields
    Padmanabhan, R.
    Shukla, Alok
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [8] A construction of curves over finite fields
    Garcia, A
    Quoos, L
    ACTA ARITHMETICA, 2001, 98 (02) : 181 - 195
  • [9] Towers of surfaces dominated by products of curves and elliptic curves of large rank over function fields
    Berger, Lisa
    JOURNAL OF NUMBER THEORY, 2008, 128 (12) : 3013 - 3030
  • [10] COUNTING ELLIPTIC SURFACES OVER FINITE FIELDS
    de Jong, A. J.
    MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) : 281 - 311