EVALUTION OF MACHINE LEARNING METHODS FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:3
|
作者
Kumar, M. Suresh [1 ]
Keerthi, V. [1 ]
Anjnai, R. N. [1 ]
Sarma, M. Manju [1 ]
Bothale, Vinod [1 ]
机构
[1] ISRO, Hyderabad 500037, India
关键词
Convolution Neural Network; Hyper spectral images; SVM; RF;
D O I
10.1109/InGARSS48198.2020.9358916
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.
引用
下载
收藏
页码:225 / 228
页数:4
相关论文
共 50 条
  • [1] Hyperspectral Image Classification using Machine Learning Approaches
    Dasi, Syamala
    Peeka, Deekshitha
    Mohammed, Reshma Begum
    Kumar, B. L. N. Phaneendra
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 444 - 448
  • [2] Optimizing extreme learning machine for hyperspectral image classification
    Li, Jiaojiao
    Du, Qian
    Li, Wei
    Li, Yunsong
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [3] Acceleration of Hyperspectral Skin Cancer Image Classification through Parallel Machine-Learning Methods
    Petracchi, Bernardo
    Torti, Emanuele
    Marenzi, Elisa
    Leporati, Francesco
    SENSORS, 2024, 24 (05)
  • [4] Cloud Implementation of Extreme Learning Machine for Hyperspectral Image Classification
    Haut, Juan M. M.
    Moreno-Alvarez, Sergio
    Moreno-Avila, Enrique
    Ayma, Victor A. A.
    Pastor-Vargas, R.
    Paoletti, Mercedes E. E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [5] Extreme Learning Machine With Composite Kernels for Hyperspectral Image Classification
    Zhou, Yicong
    Peng, Jiangtao
    Chen, C. L. Philip
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2351 - 2360
  • [6] Stacked Kernel Extreme Learning Machine for Hyperspectral Image Classification
    Wei, Yantao
    Zhang, Peng
    Yao, Huang
    Xu, Jiazhen
    You, Xinge
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 481 - 486
  • [7] Hyperspectral Image Classification Using Reduced Extreme Learning Machine
    Sigirci, Ibrahim Onur
    Bilgin, Gokhan
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 372 - 375
  • [8] Hyperspectral Image Classification with Hybrid Kernel Extreme Learning Machine
    Ergul, Ugur
    Bilgin, Gokhan
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [9] Improving the Performance of Extreme Learning Machine for Hyperspectral Image Classification
    Li, Jiaojiao
    Du, Qian
    Li, Wei
    Li, Yunsong
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XI, 2015, 9501
  • [10] Active Learning Methods for Classification of Hyperspectral Remote Sensing Image
    Ding, Sheng
    Li, Bo
    Fu, Xiaowei
    INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 484 - 491