Accurate calculation of the solutions to the Thomas-Fermi equations

被引:21
|
作者
Amore, Paolo [1 ]
Boyd, John P. [2 ]
Fernandez, Francisco M. [3 ]
机构
[1] Univ Colima, CUICBAS, Fac Ciencias, Colima, Mexico
[2] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[3] CCT La Plata CONICET, UNLP, INIFIA, Div Quim Teor, RA-1900 La Plata, Argentina
基金
美国国家科学基金会;
关键词
Thomas-Fermi equations; Critical slope; Singular points; Hankel-Pade method; Power series; Fade approximants; Hermite-Pade approximants; Chebyshev polynomials; SPECTRAL METHODS; POSITIVE-IONS; RESONANCES; CHEBYSHEV; SERIES; APPROXIMATION; EIGENVALUES; ENERGY; MODEL; ATOMS;
D O I
10.1016/j.amc.2014.01.137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Pade-Hankel method, numerical integration, power series with Fade and Hermite-Pade approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:929 / 943
页数:15
相关论文
共 50 条