The first initial-boundary value problem of parabolic Monge-Ampere equations outside a bowl-shaped domain

被引:2
|
作者
Dai, Limei [1 ]
Cheng, Huihui [2 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic Monge-Ampere equations; Initial-boundary value problem; Bowl-shaped domain; Perron method; Asymptotic behavior; EXTERIOR DIRICHLET PROBLEM; THEOREM; CALABI; UNIQUENESS; EXISTENCE; JORGENS;
D O I
10.1186/s13661-021-01505-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the parabolic Monge-Ampere equations -u(t) det(D(2)u) = g outside a bowl-shaped domain with g being the perturbation of g(0)(vertical bar x|) at infinity. Under the weaker conditions compared with the problem outside a cylinder, we obtain the existence and uniqueness of viscosity solutions with asymptotic behavior for the first initial-boundary value problem by using the Perron method.
引用
收藏
页数:17
相关论文
共 50 条