Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease

被引:77
|
作者
Gross, Andrew M. [1 ]
Ajay, Subramanian S. [1 ]
Rajan, Vani [1 ]
Brown, Carolyn [1 ]
Bluske, Krista [1 ]
Burns, Nicole J. [1 ]
Chawla, Aditi [1 ]
Coffey, Alison J. [1 ]
Malhotra, Alka [1 ]
Scocchia, Alicia [1 ]
Thorpe, Erin [1 ]
Dzidic, Natasa [2 ]
Hovanes, Karine [2 ]
Sahoo, Trilochan [2 ]
Dolzhenko, Egor [1 ]
Lajoie, Bryan [1 ]
Khouzam, Amirah [3 ]
Chowdhury, Shimul [4 ,5 ]
Belmont, John [1 ]
Roller, Eric [1 ]
Ivakhno, Sergii [6 ]
Tanner, Stephen [1 ]
McEachern, Julia [1 ]
Hambuch, Tina [3 ]
Eberle, Michael [1 ]
Hagelstrom, R. Tanner [1 ]
Bentley, David R. [6 ]
Perry, Denise L. [1 ]
Taft, Ryan J. [1 ]
机构
[1] Illumina Inc, San Diego, CA 92121 USA
[2] CombiMatrix Diagnost, Irvine, CA USA
[3] Invitae Corp, San Francisco, CA USA
[4] Rady Childrens Inst Genom Med, Encinitas, CA USA
[5] Rady Childrens Hosp, Encinitas, CA USA
[6] Illumina Cambridge Ltd, Saffron Walden, England
关键词
whole genome sequencing (WGS); copy number variation (CNV); rare and undiagnosed disease; structural variation (SV); microarray; NEXT-GENERATION; STRUCTURAL VARIATION; DATABASE; GUIDELINES; PHENOTYPE; STANDARDS;
D O I
10.1038/s41436-018-0295-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. Methods: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. Results: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (similar to 10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. Conclusion: Robust identification of CNVs by GS is possible within a clinical testing environment.
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 50 条
  • [1] Copy number variants in clinical whole genome sequencing: deployment and interpretation for rare and undiagnosed disease
    Gross, Andrew M.
    [J]. CANCER GENETICS, 2018, 224 : 71 - 71
  • [2] Rare copy-number variants as modulators of common disease susceptibility
    Auwerx, Chiara
    Joeloo, Maarja
    Sadler, Marie C.
    Tesio, Nicolo
    Ojavee, Sven
    Clark, Charlie J.
    Magi, Reedik
    Reymond, Alexandre
    Kutalik, Zoltan
    [J]. GENOME MEDICINE, 2024, 16 (01)
  • [3] Rare copy-number variants as modulators of common disease susceptibility
    Chiara Auwerx
    Maarja Jõeloo
    Marie C. Sadler
    Nicolò Tesio
    Sven Ojavee
    Charlie J. Clark
    Reedik Mägi
    Alexandre Reymond
    Zoltán Kutalik
    [J]. Genome Medicine, 16
  • [4] Clinical interpretation of copy number variants in the human genome
    Nowakowska, Beata
    [J]. JOURNAL OF APPLIED GENETICS, 2017, 58 (04) : 449 - 457
  • [5] Clinical interpretation of copy number variants in the human genome
    Beata Nowakowska
    [J]. Journal of Applied Genetics, 2017, 58 : 449 - 457
  • [6] Incidental copy-number variants identified by routine genome testing in a clinical population
    Boone, Philip M.
    Soens, Zachry T.
    Campbell, Ian M.
    Stankiewicz, Pawel
    Cheung, Sau Wai
    Patel, Ankita
    Beaudet, Arthur L.
    Plon, Sharon E.
    Shaw, Chad A.
    McGuire, Amy L.
    Lupski, James R.
    [J]. GENETICS IN MEDICINE, 2013, 15 (01) : 45 - 54
  • [7] Whole Genome Sequencing-Based Rare Copy-Number Variation Analysis in Patients With Proteinuric Kidney Disease
    Yoon, Jihoon
    Greenberg, Anya
    Onuchic-Whitford, Ana C.
    Mcnulty, Michelle
    Lee, Dongwon
    Sampson, Matt G.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 755 - 755
  • [8] SCIP: software for efficient clinical interpretation of copy number variants detected by whole-genome sequencing
    Qiliang Ding
    Cherith Somerville
    Roozbeh Manshaei
    Brett Trost
    Miriam S. Reuter
    Kelsey Kalbfleisch
    Kaitlin Stanley
    John B. A. Okello
    S. Mohsen Hosseini
    Eriskay Liston
    Meredith Curtis
    Mehdi Zarrei
    Edward J. Higginbotham
    Ada J. S. Chan
    Worrawat Engchuan
    Bhooma Thiruvahindrapuram
    Stephen W. Scherer
    Raymond H. Kim
    Rebekah K. Jobling
    [J]. Human Genetics, 2023, 142 : 201 - 216
  • [9] SCIP: software for efficient clinical interpretation of copy number variants detected by whole-genome sequencing
    Ding, Qiliang
    Somerville, Cherith
    Manshaei, Roozbeh
    Trost, Brett
    Reuter, Miriam S.
    Kalbfleisch, Kelsey
    Stanley, Kaitlin
    Okello, John B. A.
    Hosseini, S. Mohsen
    Liston, Eriskay
    Curtis, Meredith
    Zarrei, Mehdi
    Higginbotham, Edward J.
    Chan, Ada J. S.
    Engchuan, Worrawat
    Thiruvahindrapuram, Bhooma
    Scherer, Stephen W.
    Kim, Raymond H.
    Jobling, Rebekah K.
    [J]. HUMAN GENETICS, 2023, 142 (02) : 201 - 216
  • [10] CNV-ClinViewer: enhancing the clinical interpretation of large copy-number variants online
    Macnee, Marie
    Perez-Palma, Eduardo
    Bruenger, Tobias
    Kloeckner, Chiara
    Platzer, Konrad
    Stefanski, Arthur
    Montanucci, Ludovica
    Bayat, Allan
    Radtke, Maximilian
    Collins, Ryan L.
    Talkowski, Michael
    Blankenberg, Daniel
    Moller, Rikke S.
    Lemke, Johannes R.
    Nothnagel, Michael
    May, Patrick
    Lal, Dennis
    [J]. BIOINFORMATICS, 2023, 39 (05)