A sharp decay estimate for positive nonlinear waves

被引:14
|
作者
Bressan, A
Yang, T
机构
[1] SISSA, I-34014 Trieste, Italy
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
hyperbolic conservation laws; positive nonlinear waves; Burgers's equation;
D O I
10.1137/S0036141003427774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a strictly hyperbolic, genuinely nonlinear system of conservation laws in one space dimension. A sharp decay estimate is proved for the positive waves in an entropy weak solution. The result is stated in terms of a partial ordering among positive measures, using symmetric rearrangements and a comparison with a solution of Burgers's equation with impulsive sources.
引用
收藏
页码:659 / 677
页数:19
相关论文
共 50 条
  • [1] A SHARP DECAY ESTIMATE FOR NONLINEAR SCHRODINGER EQUATIONS WITH VANISHING POTENTIALS
    Jiang, Yongsheng
    Zhou, Huan-Song
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) : 1723 - 1730
  • [2] Sharp decay estimate for solutions of general Choquard equations
    Miao, Xu
    Zhao, Junfang
    Chu, Changmu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 190
  • [3] POSITIVE TEMPORAL SHARP WAVES IN THE NEONATE
    NOWACK, WJ
    JANATI, A
    ANGTUACO, T
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1988, 69 (05): : P93 - P93
  • [4] A sharp estimate of positive integral points in6-dimensional polyhedra and a sharp estimate of smooth numbers
    LIANG Andrew
    YAU Stephen
    ZUO Huai Qing
    Science China Mathematics, 2016, 59 (03) : 425 - 444
  • [5] A sharp estimate of positive integral points in 6-dimensional polyhedra and a sharp estimate of smooth numbers
    Liang, Andrew
    Yau, Stephen
    Zuo HuaiQing
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (03) : 425 - 444
  • [6] A sharp estimate of positive integral points in 6-dimensional polyhedra and a sharp estimate of smooth numbers
    Andrew Liang
    Stephen Yau
    HuaiQing Zuo
    Science China Mathematics, 2016, 59 : 425 - 444
  • [7] THE EXPONENT DECAY OF NONLINEAR WAVES
    盛其荣
    Acta Mathematica Scientia, 1995, (S1) : 11 - 15
  • [8] Sharp Exponential Decay Rates for Anisotropically Damped Waves
    Keeler, Blake
    Kleinhenz, Perry
    ANNALES HENRI POINCARE, 2023, 24 (05): : 1561 - 1595
  • [9] Sharp Exponential Decay Rates for Anisotropically Damped Waves
    Blake Keeler
    Perry Kleinhenz
    Annales Henri Poincaré, 2023, 24 : 1561 - 1595
  • [10] Positive sharp waves in the EEG of children and adults
    Janati, Bruce
    Khan, Muhammad Umair
    Alghassab, Naif
    Alshurtan, Kareemah
    BRAIN INJURY, 2016, 30 (5-6) : 481 - 481