In vivo fluorescence correlation spectroscopy analyses of FMBP-1, a silkworm transcription factor

被引:13
|
作者
Tsutsumi, Motosuke [1 ]
Muto, Hideki [1 ,2 ]
Myoba, Shohei [1 ]
Kimoto, Mai [3 ]
Kitamura, Akira [1 ]
Kamiya, Masakatsu [1 ]
Kikukawa, Takashi [1 ]
Takiya, Shigeharu [3 ]
Demura, Makoto [1 ]
Kawano, Keiichi [1 ,4 ]
Kinjo, Masataka [1 ]
Aizawa, Tomoyasu [1 ]
机构
[1] Hokkaido Univ, Fac Adv Life Sci, Sapporo, Hokkaido 0600810, Japan
[2] Nagasaki Univ, Sch Med, Biomed Res Support Ctr, Nagasaki 852, Japan
[3] Hokkaido Univ, Fac Sci, Sapporo, Hokkaido 060, Japan
[4] Chitose Inst Sci & Technol, Chitose, Japan
来源
FEBS OPEN BIO | 2016年 / 6卷 / 02期
关键词
DNA-binding protein; fluorescence correlation spectroscopy; one score and three peptide repeat domain; silkworm; transcription factor; DNA-BINDING DOMAIN; SERICIN-1; GENE; BOMBYX-MORI; FIBROIN; PROTEIN; GLAND; DIFFUSION; PROMOTER; CONTAINS; ELEMENTS;
D O I
10.1002/2211-5463.12026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroin modulator-binding protein 1 (FMBP-1) is a silkworm transcription factor that has a unique DNA-binding domain called the one score and three amino acid peptide repeat (STPR). Here we used fluorescence correlation spectroscopy (FCS) to analyze the diffusion properties of an enhanced green fluorescent protein-tagged FMBP-1 protein (EGFP-FMBP-1) expressed in posterior silk gland (PSG) cells of Bombyx mori at the same developmental stage as natural FMBP-1 expression. EGFP-FMBP-1 clearly localized to cell nuclei. From the FCS analyses, we identified an immobile DNA-bound component and three discernible diffusion components. We also used FCS to observe the movements of wild-type and mutant EGFP-FMBP-1 proteins in HeLa cells, a simpler experimental system. Based on previous in vitro observation, we also introduced a single amino acid substitution in order to suppress stable FMBP-1-DNA binding; specifically, we replaced the ninth Arg in the third repeat within the STPR domain with Ala. This mutation completely disrupted the slowest diffusion component as well as the immobile component. The diffusion properties of other FMBP-1 mutants (e.g. mutants with N-terminal or C-terminal truncations) were also analyzed. Based on our observations, we suggest that the four identifiable movements might correspond to four distinct FMBP-1 states: (a) diffusion of free protein, (b) and (c) two types of transient interactions between FMBP-1 and chromosomal DNA, and (d) stable binding of FMBP-1 to chromosomal DNA.
引用
收藏
页码:106 / 125
页数:20
相关论文
共 50 条
  • [1] DNA-Binding Property of the Novel DNA-Binding Domain STPR in FMBP-1 of the Silkworm Bombyx mori
    Takiya, Shigeharu
    Saito, Shin
    Yokoyama, Takuya
    Matsumoto, Daisuke
    Aizawa, Tomoyasu
    Kamiya, Masakatsu
    Demura, Makoto
    Kawano, Keiichi
    JOURNAL OF BIOCHEMISTRY, 2009, 146 (01): : 103 - 111
  • [2] Quantifying transcription factor–DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy
    Ziqing Winston Zhao
    Melanie D White
    Yanina D Alvarez
    Jennifer Zenker
    Stephanie Bissiere
    Nicolas Plachta
    Nature Protocols, 2017, 12 : 1458 - 1471
  • [3] Quantifying transcription factor-DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy
    Zhao, Ziqing Winston
    White, Melanie D.
    Alvarez, Yanina D.
    Zenker, Jennifer
    Bissiere, Stephanie
    Plachta, Nicolas
    NATURE PROTOCOLS, 2017, 12 (07) : 1458 - 1471
  • [4] Fluorescence correlation spectroscopy in vivo
    Muetze, Joerg
    Ohrt, Thomas
    Schwille, Petra
    LASER & PHOTONICS REVIEWS, 2011, 5 (01) : 52 - 67
  • [5] Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy
    Siegel, Amanda P.
    Hays, Nicole M.
    Day, Richard N.
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (02)
  • [6] Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy
    Clark, Natalie M.
    Hinde, Elizabeth
    Winter, Cara M.
    Fisher, Adam P.
    Crosti, Giuseppe
    Blilou, Ikram
    Gratton, Enrico
    Benfey, Philip N.
    Sozzani, Rosangela
    ELIFE, 2016, 5
  • [7] In Vivo Applications of Fluorescence Correlation Spectroscopy
    Chen, Huimin
    Farkas, Elaine R.
    Webb, Watt W.
    BIOPHYSICAL TOOLS FOR BIOLOGISTS, VOL 2: IN VIVO TECHNIQUES, 2008, 89 : 3 - +
  • [8] In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy
    Muetze, Joerg
    Ohrt, Thomas
    Petrasek, Zdenek
    Schwille, Petra
    SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY, 2010, 96 : 139 - 154
  • [9] Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy
    Gurpreet Kaur
    Mauro W. Costa
    Christian M. Nefzger
    Juan Silva
    Juan Carlos Fierro-González
    Jose M. Polo
    Toby D.M. Bell
    Nicolas Plachta
    Nature Communications, 4
  • [10] Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy
    Kaur, Gurpreet
    Costa, Mauro W.
    Nefzger, Christian M.
    Silva, Juan
    Fierro-Gonzalez, Juan Carlos
    Polo, Jose M.
    Bell, Toby D. M.
    Plachta, Nicolas
    NATURE COMMUNICATIONS, 2013, 4