Groupoid gradings: A Morita context, semiprimality, and a Bergman-type question

被引:3
|
作者
Flores, Daiana [1 ]
Morgado, Andrea [2 ]
Paques, Antonio [3 ]
机构
[1] Univ Fed Santa Maria, Dept Matemat, Santa Maria, RS, Brazil
[2] Univ Fed Pelotas, Dept Matemat & Estat, Inst Fis & Matemat, Campus Capao Leao, Pelotas, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Bergman's question; groupoid action; Groupoid grading; Morita context; semiprimality; smash product;
D O I
10.1080/00927872.2019.1567745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in some natural consequences arising from the canonical duality relation between the concepts of groupoid grading and groupoid action. Any algebra A over a field K graded by a finite groupoid has a canonical structure of a module algebra over the dual algebra of the groupoid algebra . The results here presented concern to the multiplicative structure of the smash product algebra and its representations. An application is the affirmative answer to a Bergmann-type question for groupoid gradings.
引用
收藏
页码:3500 / 3519
页数:20
相关论文
共 50 条
  • [1] Groupoid actions on sets, duality and a morita context
    Della Flora, Saradia
    Flores, Daiana
    Morgado, Andrea
    Tamusiunas, Thaisa
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (01) : 178 - 190
  • [2] Hilbert matrix on spaces of Bergman-type
    Jevtic, Miroljub
    Karapetrovic, Boban
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 241 - 254
  • [3] Holomorphic NK and Bergman-type Spaces
    Ahmed, A. El-Sayed
    Bahkit, M. A.
    OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2010, 195 : 121 - 138
  • [4] Bergman-type projections in generalized Fock spaces
    Bommier-Hato, Helene
    Englis, Miroslav
    Youssfi, El-Hassan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1086 - 1104
  • [5] BACKWARD EXTENSIONS OF BERGMAN-TYPE WEIGHTED SHIFT
    Li, Chunji
    Qi, Wentao
    Wang, Haiwen
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 81 - 93
  • [6] BAND-DOMINATED OPERATORS ON BERGMAN-TYPE SPACES
    伍盛坤
    郑德超
    Acta Mathematica Scientia, 2023, 43 (01) : 387 - 408
  • [7] Bergman-type reproducing kernels, contractive divisors, and dilations
    McCullough, S
    Richter, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 190 (02) : 447 - 480
  • [8] Single point extremal functions in Bergman-type spaces
    Aleman, A
    Richter, S
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (03) : 581 - 605
  • [9] Band-Dominated Operators on Bergman-Type Spaces
    Wu, Shengkun
    Zheng, Dechao
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 387 - 408
  • [10] WEIGHTED COMPOSITION OPERATORS BETWEEN BERGMAN-TYPE SPACES
    Sharma, Ajay K.
    Sharma, Som Datt
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 21 (03): : 465 - 474