Stable force-myographic control of a prosthetic hand using incremental learning

被引:0
|
作者
Rasouli, Mahdi [1 ,2 ]
Ghosh, Rohan [3 ]
Lee, Wang Wei [1 ,2 ]
Thakor, Nitish V. [2 ,4 ,5 ]
Kukreja, Sunil [3 ]
机构
[1] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn NGS, Singapore 117548, Singapore
[2] Natl Univ Singapore, Singapore Inst Neurotechnol SINAPSE, Singapore 117548, Singapore
[3] Natl Univ Singapore, Singapore Inst Neurotechnol SINAPSE, Inst Life Sci, Singapore 117548, Singapore
[4] Natl Univ Singapore, Elect & Comp Engn, Singapore 117548, Singapore
[5] Johns Hopkins Univ, Biomed Engn, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Force myography has been proposed as an appealing alternative to electromyography for control of upper limb prosthesis. A limitation of this technique is the non-stationary nature of the recorded force data. Force patterns vary under influence of various factors such as change in orientation and position of the prosthesis. We hereby propose an incremental learning method to overcome this limitation. We use an online sequential extreme learning machine where occasional updates allow continual adaptation to signal changes. The applicability and effectiveness of this approach is demonstrated for predicting the hand status from forearm muscle forces at various arm positions. The results show that incremental updates are indeed effective to maintain a stable level of performance, achieving an average classification accuracy of 98.75% for two subjects.
引用
收藏
页码:4828 / 4831
页数:4
相关论文
共 50 条
  • [1] Towards Enhanced Control of Upper Prosthetic Limbs: A Force-Myographic Approach
    Rasouli, Mahdi
    Chellamuthu, Karthik
    Cabibihan, John-John
    Kukreja, Sunil L.
    2016 6TH IEEE INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2016, : 232 - 236
  • [2] Stable myoelectric control of a hand prosthesis using non-linear incremental learning
    Gijsberts, Arjan
    Bohra, Rashida
    Gonzalez, David Sierra
    Werner, Alexander
    Nowak, Markus
    Caputo, Barbara
    Roa, Maximo A.
    Castellini, Claudio
    FRONTIERS IN NEUROROBOTICS, 2014, 8 : 1 - 15
  • [3] A grasping force control strategy for anthropomorphic prosthetic hand
    Zhang, Ting
    Jiang, Li
    Liu, Hong
    Jiqiren/Robot, 2012, 34 (02): : 190 - 196
  • [4] Adaptive Fuzzy PID Force Control for a Prosthetic Hand
    Zhu, Gaoke
    Duan, Xiaogang
    Deng, Hua
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 93 - +
  • [5] Adaptive electromyographic(EMG) prosthetic hand control using reinforcement learning
    Yu, WW
    Yokoi, H
    Nishikawa, D
    INTELLIGENT AUTONOMOUS SYSTEMS: IAS-5, 1998, : 266 - 271
  • [6] Incremental evolution of a signal classification hardware architecture for prosthetic hand control
    Torresen, Jim
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2008, 12 (03) : 187 - 199
  • [7] A Force-and-slippage control strategy for a poliarticulated prosthetic hand
    Cordella, F.
    Gentile, C.
    Zollo, L.
    Barone, R.
    Sacchetti, R.
    Davalli, A.
    Siciliano, B.
    Guglielmelli, E.
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 3524 - 3529
  • [8] Grasping Force Control of Prosthetic Hand Based on PCA and SVM
    Ren, Jian
    Li, Chuanjiang
    Huang, Huaiqi
    Wang, Peng
    Zhu, Yanfei
    Wang, Bin
    An, Kang
    ADVANCED COMPUTATIONAL METHODS IN LIFE SYSTEM MODELING AND SIMULATION, LSMS 2017, PT I, 2017, 761 : 222 - 230
  • [9] Prosthetic Hand Control Using Speech and sEMG
    Kawasaki, Haruhisa
    Mouri, Tetsuya
    Iwase, Kentaro
    Sakaeda, Hirofumi
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 1136 - 1141
  • [10] Optical Fiber Force Myography Sensor for Applications in Prosthetic Hand Control
    Fujiwara, Eric
    Wu, Yu Tzu
    Suzuki, Carlos Kenichi
    de Andrade, Dandara Thamilys Guedes
    Ribas Neto, Antonio
    Rohmer, Eric
    2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 342 - 347