On the diameter of a class of the generalized de Bruijn graphs

被引:0
|
作者
Caro, JDL [1 ]
Zeratsion, TW [1 ]
机构
[1] Univ Philippines, Dept Comp Sci, Quezon City 1101, Philippines
关键词
D O I
10.1109/ISPAN.2002.1004286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generalized de Bruijn digraph denoted by G(B) (n, m) is defined to be the digraph with m vertices labelled by 0, 1, 2,..., m - 1 and with the adjacency defined as follows: If i is a vertex in G(B) (n, M) then i is connected to each vertex in the set E(i), where E(i) = {ni + alpha(mod m)\alpha is an element of [0, n - 1]}. The generalized de Bruijn graph denoted by UG(B) (n, m) is defined to be the undirected version of G(B) (n, m) obtained by replacing each arc by an undirected edge and eliminating self-loops and multi-edges. In this, paper, we will show that the diameter of UG(B) (n, m) is 2 for any m in [n + 1, n(2)] where n divides m and that the diameter is 3 for any m in [n(2) + 1, n] where n divides m.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [1] On the Diameter of the Generalized Undirected De Bruijn Graphs
    Kuo, Jyhmin
    Fu, Hung-Lin
    [J]. ARS COMBINATORIA, 2012, 106 : 395 - 408
  • [2] Generalized de Bruijn graphs
    Malyshev, FM
    Tarakanov, VE
    [J]. MATHEMATICAL NOTES, 1997, 62 (3-4) : 449 - 456
  • [3] Generalized de Bruijn graphs
    F. M. Malyshev
    V. E. Tarakanov
    [J]. Mathematical Notes, 1997, 62 : 449 - 456
  • [4] Generalized de Bruijn graphs
    Malyshev, Fedor M.
    [J]. DISCRETE MATHEMATICS AND APPLICATIONS, 2022, 32 (01): : 11 - 38
  • [5] Generalized de bruijn graphs
    Zdzistaw, Grodzki
    Wronski, Aleksandr
    [J]. Journal of Information Processing and Cybernetics, 1994, 30 (01):
  • [6] 2-Diameter of de Bruijn graphs
    Li, Q
    Sotteau, D
    Xu, JM
    [J]. NETWORKS, 1996, 28 (01) : 7 - 14
  • [7] On the diameter of the generalized de Bruijn graphs UGB(n, n2+1)
    Caro, JDL
    Nochefranca, LR
    Sy, PW
    [J]. I-SPAN 2000: INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES ALGORITHMS AND NETWORKS, PROCEEDINGS, 2000, : 57 - 61
  • [8] The maximum independent sets of de Bruijn graphs of diameter 3
    Cartwright, Dustin A.
    Cueto, Maria Angelica
    Tobis, Enrique A.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] HOMOMORPHISMS OF GENERALIZED DE BRUIJN-GOOD GRAPHS
    LIU Mulan Inetitute of Systems Science
    [J]. Journal of Systems Science & Complexity, 1993, (02) : 175 - 178
  • [10] COUNTING CLOSED WALKS IN GENERALIZED DE BRUIJN GRAPHS
    SHIBATA, Y
    SHIRAHATA, M
    OSAWA, S
    [J]. INFORMATION PROCESSING LETTERS, 1994, 49 (03) : 135 - 138