Constrained nonnegative matrix factorization and hyperspectral image dimensionality reduction

被引:15
|
作者
Xiao, Zhiyong [1 ]
Bourennane, Salah [2 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi, Peoples R China
[2] Ecole Cent Marseille, Inst Fresnel UMR CNRS, Marseille, France
基金
中国国家自然科学基金;
关键词
BAND SELECTION; CLASSIFICATION; TENSOR;
D O I
10.1080/2150704X.2013.870674
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This letter presents a constrained nonnegative matrix factorization (NMF)-based method for hyperspectral image dimensionality reduction. The proposed method combines the NMF and Laplacian Eigenmaps (LE). It overcomes the drawback that NMF does not consider the intrinsic geometric structure of the data space. In LE framework, an affinity graph is constructed to encode the geometrical information. The proposed technique seeks a matrix factorization which considers the graph structure. We also use the smoothness constraint and the sparsity constraint on the lower dimensional matrices. The gradient descent approach is used to find solution of the proposed model. In order to evaluate the developed method, we use the support vector machine and the k-nearest neighbourhood (KNN) approach for hyperspectral image classification. Experiments are done on a hyperspectral image. The results are compared with those obtained using other hyperspectal image dimensionality reduction methods. The classification accuracy using the proposed method is higher than that of the alternative approaches.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [1] Hyperspectral Image Unmixing Based on Constrained Nonnegative Matrix Factorization
    Fang Shuai
    Wang Jinming
    Cao Fengyun
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [2] Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Jia, Sen
    Qian, Yuntao
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (01): : 161 - 173
  • [3] Discriminative Nonnegative Matrix Factorization for dimensionality reduction
    Babaee, Mohammadreza
    Tsoukalas, Stefanos
    Babaee, Maryam
    Rigoll, Gerhard
    Datcu, Mihai
    [J]. NEUROCOMPUTING, 2016, 173 : 212 - 223
  • [4] Hyperspectral Image Unmixing with Nonnegative Matrix Factorization
    Zdunek, Rafal
    [J]. 2012 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES), 2012,
  • [5] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL CHANGE DETECTION
    Erturk, Alp
    [J]. 2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 49 - 52
  • [6] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL CHANGE DETECTION
    Erturk, Alp
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1645 - 1648
  • [7] CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR ROBUST HYPERSPECTRAL UNMIXING
    Feng, Fan
    Deng, Chenwei
    Wang, Wenzheng
    Dai, Jiahui
    Li, Zhenzhen
    Zhao, Baojun
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4221 - 4224
  • [8] A complexity constrained nonnegative matrix factorization for hyperspectral unmixing
    Jia, Sen
    Qian, Yuntao
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 268 - +
  • [9] Hyperspectral Unmixing Based on Constrained Nonnegative Matrix Factorization
    Jia Xiangxiang
    Guo Baofeng
    Ding Fanchang
    Xu Wenjie
    [J]. ACTA PHOTONICA SINICA, 2021, 50 (07)
  • [10] Constrained Nonnegative Matrix Factorization for Image Representation
    Liu, Haifeng
    Wu, Zhaohui
    Li, Xuelong
    Cai, Deng
    Huang, Thomas S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1299 - 1311