Application of weak equivalence transformations to a group analysis of a drift-diffusion model

被引:21
|
作者
Romano, V [1 ]
Torrisi, M [1 ]
机构
[1] Politecn Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
来源
关键词
D O I
10.1088/0305-4470/32/45/310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A group analysis of a class of drift-diffusion systems is performed. In account of the presence of arbitrary constitutive functions, we look for Lie symmetries starting from the weak equivalence transformations. Applications to the transport of charges in semiconductors are presented and a special class of solutions is given for particular doping profiles.
引用
收藏
页码:7953 / 7963
页数:11
相关论文
共 50 条
  • [1] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78
  • [2] Weak solutions to the stationary quantum drift-diffusion model
    Qiang, Chen
    Ping, Guan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 666 - 673
  • [3] A group analysis via weak equivalence transformations for a model of tumour encapsulation
    Gambino, G
    Greco, AM
    Lombardo, MC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (12): : 3835 - 3846
  • [4] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [5] Existence of weak solution and semiclassical limit for quantum drift-diffusion model
    Chen, Li
    Ju, Qiangchang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (01): : 1 - 15
  • [6] Existence of weak solution and semiclassical limit for quantum drift-diffusion model
    Li Chen
    Qiangchang Ju
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 1 - 15
  • [7] WEAK SOLUTIONS TO A HYDRODYNAMIC MODEL FOR SEMICONDUCTORS AND RELAXATION TO THE DRIFT-DIFFUSION EQUATION
    MARCATI, P
    NATALINI, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (02) : 129 - 145
  • [8] Testing the drift-diffusion model
    Fudenberg, Drew
    Newey, Whitney
    Strack, Philipp
    Strzalecki, Tomasz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) : 33141 - 33148
  • [9] ANALYSIS OF A DRIFT-DIFFUSION MODEL FOR PEROVSKITE SOLAR CELLS
    Abdel, Dilara
    Glitzky, Annegret
    Liero, Matthias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 99 - 131
  • [10] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390