Experimental investigations into electric discharge grinding and ultrasonic vibration-assisted electric discharge grinding of Inconel 601

被引:14
|
作者
Mishra, Virendra [1 ]
Pandey, Pulak M. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Mech Engn, New Delhi 110016, India
关键词
Discharge; electric; grinding; Inconel; roughness; surface; ultrasonic; vibration; MATERIAL REMOVAL; EDM;
D O I
10.1080/10426914.2018.1453143
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents experimental investigations into electric discharge grinding (EDG) and ultrasonic vibration-assisted electric discharge grinding (UVAEDG) of Inconel 601. The process parameters selected for both processes were duty cycle, discharge current, pulse on time, grinding wheel speed, work speed, and speed ratio to study their influence on responses like surface roughness (R-a) and material removal rate (MRR). It was found that duty cycle, wheel speed, work speed, discharge current, speed ratio, and pulse duration significantly influenced MRR and R-a. It was inferred that MRR increased with increase in duty cycle, wheel speed, current, work speed, and pulse duration in both EDG and UVAEDG processes. It was also inferred that R-a increased with rise in duty factor, pulse on time, and discharge current in EDG and UVAEDG processes.
引用
收藏
页码:1518 / 1530
页数:13
相关论文
共 50 条
  • [1] An Experimental Study of Ultrasonic Vibration-Assisted Grinding
    NassaR, Amal
    NassaR, Eman
    2012 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL TOOLS FOR ENGINEERING APPLICATIONS (ACTEA), 2012, : 289 - 291
  • [2] Ultrasonic vibration-assisted electric discharge machining: A research review
    Khatri, Bharat C.
    Rathod, Pravin
    Valaki, Janak B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2016, 230 (02) : 319 - 330
  • [3] Experimental Study on Ultrasonic Vibration-Assisted Grinding of SiCp/Al Composites Grinding
    Jin, Jinghao
    Mao, Jian
    Wang, Rong
    Cui, Mengyang
    MICROMACHINES, 2025, 16 (03)
  • [4] AAC theory for ultrasonic vibration-assisted grinding
    Hu, Zhongwei
    Chen, Yue
    Lai, Zhiyuan
    Zhang, Yuqiang
    Yu, Yiqing
    Jin, Jianfeng
    Peng, Qing
    Xu, Xipeng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (3-4): : 1609 - 1620
  • [5] Experimental Study on Vibration-Assisted Grinding
    Li, Kuan-Ming
    Hu, Yang-Ming
    Yang, Zhong-Yi
    Chen, Ming-Yuan
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [6] Investigation on grinding temperature in ultrasonic vibration-assisted grinding of zirconia ceramics
    Zheng Kan
    Liao Wenhe
    Sun Lianjun
    Meng Heng
    MACHINING SCIENCE AND TECHNOLOGY, 2019, 23 (04) : 612 - 628
  • [7] Modeling of grinding force in longitudinal ultrasonic vibration-assisted grinding alumina ceramics and experimental evaluation
    Zhao, Mingli
    Xue, Boxi
    Li, Bohan
    Zhu, Junming
    WenbinSong
    Nie, Lixin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (5-6): : 2325 - 2339
  • [8] Experimental study on ultrasonic vibration-assisted grinding of quartz glass microchannel
    Lu, Yan-Jun
    Guo, Ming-Rong
    Dai, Yong-Qi
    Wang, Qiang
    Luo, Hu
    ADVANCES IN MANUFACTURING, 2025,
  • [9] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Kai Ding
    Yucan Fu
    Honghua Su
    Xiaobei Gong
    Keqin Wu
    The International Journal of Advanced Manufacturing Technology, 2014, 71 : 1929 - 1938
  • [10] Grinding force assessment in tangential ultrasonic vibration-assisted grinding gear: Analytical model and experimental verification
    Bie, Wenbo
    Zhao, Bo
    Gao, Guofu
    Chen, Fan
    Chen, Huitao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (11-12): : 5457 - 5474