Functional inequality on path space over a non-compact Riemannian manifold

被引:11
|
作者
Chen, Xin [1 ]
Wu, Bo [2 ]
机构
[1] Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Dirichlet form; Closability; Functional inequality; Quasi-regularity; LOGARITHMIC SOBOLEV INEQUALITIES; QUASI-INVARIANCE; DIRICHLET FORMS; WIENER MEASURE; LOOP-SPACES; GEOMETRY;
D O I
10.1016/j.jfa.2014.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of the O-U Dirichlet form and the damped O-U Dirichlet form on path space over a general non-compact Riemannian manifold which is complete and stochastically complete. We show a weighted log-Sobolev inequality for the O-U Dirichlet form and the (standard) logSobolev inequality for the damped O-U Dirichlet form. In particular, the Poincare inequality (and the super Poincare inequality) can be established for the O-U Dirichlet form on path space over a class of Riemannian manifolds with unbounded Ricci curvatures. Moreover, we construct a large class of quasi-regular local Dirichlet forms with unbounded random diffusion coefficients on path space over a general non-compact manifold. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:6753 / 6779
页数:27
相关论文
共 50 条