On Positive Real Lemma for stabilizable and detectable systems

被引:0
|
作者
Kunimatsu, Sadaaki [1 ]
Fujii, Takao [2 ]
Ishitobi, Mitsuaki [1 ]
机构
[1] Kumamoto Univ, Kumamoto 860, Japan
[2] Fukui Univ Technol, Fukui, Japan
关键词
YAKUBOVICH-POPOV LEMMA; OBSERVER; DESIGN;
D O I
10.1109/CDC.2009.5400274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we state the positive real lemma for stabilizable and detectable systems. First, without assumptions of controllability and observability, we show the positive real lemma for stable systems under only some constraint with respect to invariant zeros. Moreover we show that the solution of the Lyapunov equation in the positive real lemma is positive definite. Next we show the positive real and strictly positive real lemmas for stabilizable and detectable systems under only that constraint.
引用
收藏
页码:4282 / 4287
页数:6
相关论文
共 50 条
  • [1] A positive real lemma for singular hybrid systems
    Park, Chan-eun
    Park, In Seok
    Kwon, Nam Kyu
    Park, PooGyeon
    IFAC PAPERSONLINE, 2020, 53 (02): : 2051 - 2056
  • [2] Bounded real lemma for positive discrete systems
    Wang, Cuihong
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (04): : 502 - 507
  • [3] An extension of the positive real lemma to descriptor systems
    Freund, RW
    Jarre, F
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (01): : 69 - 87
  • [4] On Kalman-Yakubovich-Popov Lemma for stabilizable systems
    Collado, J
    Lozano, R
    Johansson, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 1089 - 1093
  • [5] Some Extensions on the Bounded Real Lemma for Positive Systems
    Shen, Jun
    Lam, James
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (06) : 3034 - 3038
  • [6] An observation on the positive real lemma
    Pandolfi, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) : 480 - 490
  • [7] A GENERALIZATION OF THE POSITIVE REAL LEMMA
    SCHERER, R
    WENDLER, W
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (04) : 882 - 886
  • [8] Strictly positive real lemma for discrete-time descriptor systems
    Lee, L
    Chen, JL
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3666 - 3667
  • [9] DUAL FORM OF A POSITIVE REAL LEMMA
    ANDERSON, BD
    MOORE, JB
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (10): : 1749 - &
  • [10] SCHWARZS LEMMA AND POSITIVE REAL MATRICES
    BELEVITCH, V
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1963, CT10 (01): : 117 - &