Ferulic acid alleviates lipopolysaccharide-induced acute lung injury through inhibiting TLR4/NF-κB signaling pathway

被引:30
|
作者
Wu, Xialei [1 ]
Lin, Liyao [2 ]
Wu, Haibin [1 ]
机构
[1] Guangdong Med Univ, Dept Crit Care Med, Affiliated Hosp, Zhanjiang 524001, Guangdong, Peoples R China
[2] Guangdong Med Univ, Dept Cardiothorac Surg, Affiliated Hosp, Zhanjiang, Guangdong, Peoples R China
关键词
acute lung injury; anti-inflammatory activity; ferulic acid; lipopolysaccharide; TLR4/NF-kappa B signaling pathway; NF-KAPPA-B; NITRIC-OXIDE; STEM-BARK; COMPLEMENT; INFLAMMATION; MODULATION; ACTIVATION; EXPRESSION; PROTECTS; FRACTION;
D O I
10.1002/jbt.22664
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ferulic acid (FA) exhibits anti-inflammatory, antidiabetic, antihyperlipidemic, antioxidant, neuroprotective, and antihypertensive effects. This study aimed to determine whether FA could ameliorate lipopolysaccharide (LPS)-induced inflammatory responses and acute lung injury (ALI) in mice. Mice were challenged with LPS intratracheally to induce ALI 1 h after 3 days of FA (25, 50, and 100 mg/kg) or dexamethasone (DEX; 5 mg/kg) administration. The lung tissues and bronchoalveolar lavage fluid (BALF) were collected 12 h after the LPS challenge. Pretreatment with FA or DEX could attenuate lung histopathological change, complement deposition, and lung wet-to-dry weight ratio of mice injured by LPS. Meanwhile, the influx of neutrophils and macrophages, as well as the production of proinflammatory cytokine (tumor necrosis factor-alpha, interleukin 1 beta [IL-1 beta], and IL-6), in BALF of ALI mice was significantly decreased. Moreover, FA or DEX markedly reversed the LPS-induced elevation of myeloperoxidase activity and monocyte chemoattractant protein-1 level in lung tissues of ALI mice. In addition, the Western blot analysis demonstrated that FA or DEX effectively inhibited the LPS-induced activation of the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-kappa B) signaling pathway in lung tissues. The current study suggested that the alleviating effect of FA against LPS-induced ALI might be partially due to the inhibition of the inflammatory response via inactivation of the TLR4/NF-kappa B signaling pathway.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] rFGF4 alleviates lipopolysaccharide-induced acute lung injury by inhibiting the TLR4/NF-KB signaling pathway
    Wang, Xianshi
    Zhou, Liya
    Ye, Shasha
    Liu, Sidan
    Chen, Lin
    Cheng, Zizhao
    Huang, Yuli
    Wang, Beibei
    Pan, Minling
    Wang, Dezhong
    Wang, Luhai
    Lei, Zhenli
    Im, Young Jun
    Li, Xiaokun
    [J]. INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 117
  • [2] Baicalin Magnesium Salt Attenuates Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting of TLR4/NF-κB Signaling Pathway
    Zhang, Lin
    Yang, Lukun
    Xie, Xiaowei
    Zheng, Hongyue
    Zheng, Hangsheng
    Zhang, Lizong
    Liu, Cuizhe
    Piao, Ji-Gang
    Li, Fanzhu
    [J]. JOURNAL OF IMMUNOLOGY RESEARCH, 2021, 2021
  • [3] Baicalin Liposome Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Inhibiting TLR4/JNK/ERK/NF-κB Pathway
    Long, Yu
    Xiang, Yan
    Liu, Songyu
    Zhang, Yulu
    Wan, Jinyan
    Yang, Qiyue
    Cui, Mingquan
    Ci, Zhimin
    Li, Nan
    Peng, Wei
    [J]. MEDIATORS OF INFLAMMATION, 2020, 2020
  • [4] Oleocanthal alleviated lipopolysaccharide-induced acute lung injury in chickens by inhibiting TLR4/NF-κB pathway activation
    Miao, Fujun
    Shan, Chunlan
    Geng, Shuxiang
    Ning, Delu
    [J]. POULTRY SCIENCE, 2023, 102 (03)
  • [5] Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway
    Han-Yang Ye
    Jian Jin
    Ling-Wei Jin
    Yan Chen
    Zhi-Hong Zhou
    Zhan-Yuan Li
    [J]. Inflammation, 2017, 40 : 523 - 529
  • [6] Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway
    Ye, Han-Yang
    Jin, Jian
    Jin, Ling-Wei
    Chen, Yan
    Zhou, Zhi-Hong
    Li, Zhan-Yuan
    [J]. INFLAMMATION, 2017, 40 (02) : 523 - 529
  • [7] Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway
    Li, Ya-Ling
    Qin, Shu-Yan
    Li, Qian
    Song, Shao-Jiang
    Xiao, Wei
    Yao, Guo-Dong
    [J]. PHYTOMEDICINE, 2023, 114
  • [8] Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats
    Guang Feng
    Ze-yu Jiang
    Bo Sun
    Jie Fu
    Tian-zuo Li
    [J]. Inflammation, 2016, 39 : 148 - 157
  • [9] Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats
    Feng, Guang
    Jiang, Ze-yu
    Sun, Bo
    Fu, Jie
    Li, Tian-zuo
    [J]. INFLAMMATION, 2016, 39 (01) : 148 - 157
  • [10] Electroacupuncture alleviates ventilator-induced lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway
    Zhang, Shuang
    Li, Shuji
    Liu, Qingmei
    Wei, Daneng
    Huang, Liping
    Yin, Hong
    Yi, Mingliang
    [J]. BMC ANESTHESIOLOGY, 2024, 24 (01)