Multiset and K-subset transforming systems

被引:0
|
作者
Nishida, TY [1 ]
机构
[1] Toyama Prefectural Univ, Fac Engn, Kosugi, Toyama 9390398, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
  • [1] Simulations of photosynthesis by a K-subset transforming system with membrane
    Nishida, TY
    FUNDAMENTA INFORMATICAE, 2002, 49 (1-3) : 249 - 259
  • [2] Faster Algorithms for k-SUBSET SUM and Variations
    Antonopoulos, Antonis
    Pagourtzis, Aris
    Petsalakis, Stavros
    Vasilakis, Manolis
    FRONTIERS OF ALGORITHMICS, IJTCS-FAW 2021, 2022, 12874 : 37 - 52
  • [3] Faster algorithms for k-subset sum and variations
    Antonopoulos, Antonis
    Pagourtzis, Aris
    Petsalakis, Stavros
    Vasilakis, Manolis
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [4] A note on a Maximum k-Subset Intersection problem
    Xavier, Eduardo C.
    INFORMATION PROCESSING LETTERS, 2012, 112 (12) : 471 - 472
  • [5] A remark on the problem of nonnegative k-subset sums
    H. Aydinian
    V. M. Blinovsky
    Problems of Information Transmission, 2012, 48 : 347 - 351
  • [6] A Remark on the Problem of Nonnegative k-Subset Sums
    Aydinian, H.
    Blinovsky, V. M.
    PROBLEMS OF INFORMATION TRANSMISSION, 2012, 48 (04) : 347 - 351
  • [7] Faster algorithms for k-subset sum and variations
    Antonis Antonopoulos
    Aris Pagourtzis
    Stavros Petsalakis
    Manolis Vasilakis
    Journal of Combinatorial Optimization, 2023, 45
  • [8] On k-Subset Sum using Enumerative Encoding
    Parque, Victor
    Miyashita, Tomoyuki
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 81 - 86
  • [9] The k-subset sum problem over finite fields
    Wang, Weiqiong
    Nguyen, Jennifer
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 204 - 217
  • [10] Symmetric sums of squares over k-subset hypercubes
    Annie Raymond
    James Saunderson
    Mohit Singh
    Rekha R. Thomas
    Mathematical Programming, 2018, 167 : 315 - 354