FT-IR microspectroscopic imaging of prostate tissue sections

被引:7
|
作者
Lasch, P [1 ]
Diem, M [1 ]
Naumann, D [1 ]
机构
[1] Robert Koch Inst, D-13353 Berlin, Germany
关键词
D O I
10.1117/12.529125
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Different cluster image reassembling methodologies have been used to generate infrared maps from FT-IR rriicrospectra of human prostate tissue sections. Spectra were collected in transmission mode with high spatial resolution by the use of a HgCdTe focal plane array detector imaging system. While univariate imaging techniques such as chemical mapping often give unsatisfactory classification results, unsupervised multivariate data analysis techniques such as agglomerative hierarchical clustering, fuzzy C-means, or k-means clustering confirmed standard histopathological techniques and turned out to be helpful to identify and to discriminate tissues structures. The use of any of the clustering algorithms dramatically increased the information content of the IR images, as compared to chemical mapping. Among the cluster imaging methods, agglomerative hierarchical clustering (Ward's algorithm) turned out to be the best method in terms of tissue structure differentiation.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] FT-IR microspectroscopic imaging of human carcinoma thin tissue sections
    Wasche, W
    Bindig, U
    Naumann, D
    Muller, G
    OPTICAL BIOPSIES AND MICROSCOPIC TECHNIQUES II, 1997, 3197 : 278 - 285
  • [2] FT-IR microspectroscopic imaging of human carcinoma tissue thin sections.
    Lasch, P
    Naumann, D
    SPECTROSCOPY OF BIOLOGICAL MOLECULES: MODERN TRENDS, 1997, : 441 - 442
  • [3] FT-IR microspectroscopic imaging of human melanoma thin sections
    Lasch, P
    Wasche, W
    Muller, G
    Naumann, D
    FOURIER TRANSFORM SPECTROSCOPY, 1998, (430): : 308 - 311
  • [4] FT-IR spectroscopic imaging of tissue thin sections
    Lasch, P
    Boese, M
    Diem, M
    DIAGNOSTIC OPTICAL SPECTROSCOPY IN BIOMEDICINE, 2001, 4432 : 10 - 16
  • [5] FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques
    Lasch, P
    Naumann, D
    CELLULAR AND MOLECULAR BIOLOGY, 1998, 44 (01) : 189 - 202
  • [6] PREPARATION OF A TISSUE MODEL FOR QUANTITATIVE FT-IR MICROSPECTROSCOPIC FUNCTIONAL-GROUP IMAGING
    DALTERIO, RA
    TICKNOR, AB
    COMBS, CM
    MOON, SL
    ROSENBERG, IE
    APPLIED SPECTROSCOPY, 1990, 44 (09) : 1575 - 1577
  • [7] Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging
    Lasch, Peter
    Diem, Max
    Haensch, Wolfgang
    Naumann, Dieter
    JOURNAL OF CHEMOMETRICS, 2006, 20 (05) : 209 - 220
  • [8] FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems
    Himmelsbach, DS
    Khalili, S
    Akin, DE
    CELLULAR AND MOLECULAR BIOLOGY, 1998, 44 (01) : 99 - 108
  • [9] Synchrotron FT-IR microspectroscopic analysis of necrotic bone
    Bayari, Sevgi Haman
    Utku, Haluk
    Ikemoto, Yuka
    Celasun, Buelent
    Koemuercue, Mahmut
    Atik, Aziz
    SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2007, 21 (04): : 227 - 234
  • [10] Mid-IR microspectroscopic Imaging of breast tumor tissue sections
    Fabian, H
    Lasch, P
    Boese, M
    Haensch, W
    BIOPOLYMERS, 2002, 67 (4-5) : 354 - 357