Mixed deterministic and probabilistic networks

被引:17
|
作者
Mateescu, Robert [1 ]
Dechter, Rina [2 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[2] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA 92697 USA
关键词
Mixed network; Probabilistic information; Deterministic information; Graphical models; Automated reasoning; Inference; Search; AND/OR search;
D O I
10.1007/s10472-009-9132-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces mixed networks, a new graphical model framework for expressing and reasoning with probabilistic and deterministic information. The motivation to develop mixed networks stems from the desire to fully exploit the deterministic information (constraints) that is often present in graphical models. Several concepts and algorithms specific to belief networks and constraint networks are combined, achieving computational efficiency, semantic coherence and user-interface convenience. We define the semantics and graphical representation of mixed networks, and discuss the two main types of algorithms for processing them: inference-based and search-based. A preliminary experimental evaluation shows the benefits of the new model.
引用
下载
收藏
页码:3 / 51
页数:49
相关论文
共 50 条
  • [1] Mixed deterministic and probabilistic networks
    Robert Mateescu
    Rina Dechter
    Annals of Mathematics and Artificial Intelligence, 2008, 54 : 3 - 51
  • [2] Deterministic networks for probabilistic computing
    Jakob Jordan
    Mihai A. Petrovici
    Oliver Breitwieser
    Johannes Schemmel
    Karlheinz Meier
    Markus Diesmann
    Tom Tetzlaff
    Scientific Reports, 9
  • [3] Deterministic networks for probabilistic computing
    Jordan, Jakob
    Petrovici, Mihai A.
    Breitwieser, Oliver
    Schemmel, Johannes
    Meier, Karlheinz
    Diesmann, Markus
    Tetzlaff, Tom
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Mixed probabilistic and deterministic dependency parsing
    Cerisara, Christophe
    Lorenzo, Alejandra
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2303 - 2306
  • [5] DETERMINISTIC AND PROBABILISTIC STUDIES ON COMMUNICATION NETWORKS
    LING, ST
    TEZUKA, Y
    KASAHARA, Y
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1965, 48 (01): : 47 - &
  • [6] Optimal quantizer for mixed Probabilistic/Deterministic parameter estimation
    Tsumura, Koji
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 6259 - 6264
  • [7] Probabilistic Deterministic Finite Automata and Recurrent Networks, Revisited
    Marzen, Sarah E.
    Crutchfield, James P.
    ENTROPY, 2022, 24 (01)
  • [8] An abstraction framework for mixed non-deterministic and probabilistic systems
    Huth, M
    VALIDATION OF STOCHASTIC SYSTEMS: A GUIDE TO CURRENT RESEARCH, 2004, 2925 : 419 - 444
  • [9] Probabilistic Invariance of Mixed Deterministic-Stochastic Dynamical Systems
    Soudjani, Sadegh Esmaeil Zadeh
    Abate, Alessandro
    HSCC 12: PROCEEDINGS OF THE 15TH ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2012, : 207 - 216
  • [10] Symbolic approach to verification and control of deterministic/probabilistic Boolean networks
    Kobayashi, K.
    Hiraishi, K.
    IET SYSTEMS BIOLOGY, 2012, 6 (06) : 215 - 222