A BANACH ALGEBRA OF SERIES OF FUNCTIONS OVER PATHS

被引:0
|
作者
Cho, Dong Hyun [1 ]
Kwon, Mo A. [2 ]
机构
[1] Kyonggi Univ, Dept Math, Suwon 16227, South Korea
[2] Kyonggi Univ, Dept Math Educ, Suwon 16227, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 02期
基金
新加坡国家研究基金会;
关键词
Analytic Wiener integral; analytic Feynman integral; Banach algebra; Ito integral; Paley-Wiener-Zygmund integral; Wiener space;
D O I
10.11568/kjm.2019.27.2.445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C[0; T] denote the space of continuous real-valued functions on [0; T]. On the space C[0; T], we introduce a Banach algebra of series of functions which are generalized Fourier-Stieltjes transforms of measures of finite variation on the product of simplex and Euclidean space. We evaluate analytic Feynman integrals of the functions in the Banach algebra which play significant roles in the Feynman integration theory and quantum mechanics.
引用
收藏
页码:445 / 463
页数:19
相关论文
共 50 条