Engineered Porous Carbon for High Volumetric Methane Storage

被引:17
|
作者
Romanos, J. [1 ,2 ]
Sweany, S. [1 ]
Rash, T. [1 ]
Firlej, L. [1 ,3 ]
Kuchta, B. [1 ,4 ]
Idrobo, J. C. [5 ]
Pfeifer, P. [1 ]
机构
[1] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[2] Lebanese Amer Univ, Dept Nat Sci, Byblos, Lebanon
[3] Univ Montpellier 2, LCVN, F-34095 Montpellier 5, France
[4] Aix Marseille Univ, Lab MARIDEL, F-13396 Marseille, France
[5] Oak Ridge Natl Lab, Adv Microscopy Lab, Oak Ridge, TN 37831 USA
关键词
DENSITY-FUNCTIONAL THEORY; ACTIVATED CARBONS; ADSORPTION; MICRO; KOH;
D O I
10.1260/0263-6174.32.8.681
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This paper covers the optimization of methane volumetric storage capacity by controlling the sub-nanometre (<1 nm) and supra-nanometre (1-5 nm) pore volumes. Nanospace engineering of KOH activated carbon generates an ideal structure for methane storage in which gas molecules are adsorbed as a high-density fluid by strong van der Waals forces into pores that are a few molecules in diameter. High specific surface areas, porosities, sub-nanometre (<1 nm) and supra-nanometre (1-5 nm) pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. The formation of tuneable sub-nanometre and supra-nanometre pores is validated by sub-critical nitrogen adsorption. Aberration-corrected scanning transmission electron microscopy data show the atomic structure of high-surface-area activated carbon (2600 m(2)/g). While high surface area and high porosity are optimal for gravimetric methane storage, the results indicate that an exclusive sub-nanometre region, a low porosity and an acceptable surface area (approximately 2000 m2/g) are ideal for methane volumetric storage, storing 120 g CH4/l (184 vol/vol) at 35 bar and room temperature (22 degrees C). High-pressure methane isotherms up to 150 bar at 30, -25 and 50 degrees C on optimal activated carbons are presented. Methane volumetric storage capacity at 35 bar reaches 176 g/l (269 vol/vol) and 202 g/l (309 vol/vol) at -25 and -50 degrees C, respectively.
引用
收藏
页码:681 / 691
页数:11
相关论文
共 50 条
  • [1] High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position?
    Elizabeth Casco, Mirian
    Martinez-Escandell, Manuel
    Gadea-Ramos, Enrique
    Kaneko, Katsumi
    Silvestre-Albero, Joaquin
    Rodriguez-Reinoso, Francisco
    CHEMISTRY OF MATERIALS, 2015, 27 (03) : 959 - 964
  • [2] High density Mongolian anthracite based porous carbon monoliths for methane storage by adsorption
    Byamba-Ochir, Narandalai
    Shim, Wang Geun
    Balathanigaimani, M. S.
    Moon, Hee
    APPLIED ENERGY, 2017, 190 : 257 - 265
  • [3] Adsorption of Methane onto Microporous Activated Carbon in a Volumetric Storage System
    A. A. Pribylov
    A. A. Fomkin
    A. V. Shkolin
    I. E. Men’shchikov
    Protection of Metals and Physical Chemistry of Surfaces, 2023, 59 : 14 - 18
  • [4] Adsorption of Methane onto Microporous Activated Carbon in a Volumetric Storage System
    Pribylov, A. A.
    Fomkin, A. A.
    Shkolin, A. V.
    Men'shchikov, I. E.
    PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2023, 59 (01) : 14 - 18
  • [5] Porous silicon carbide/carbon composite microspherules for methane storage
    Li, Fengbo
    Qian, Qingli
    Zhang, Shufeng
    Yan, Fang
    Yuan, Guoqing
    JOURNAL OF NATURAL GAS CHEMISTRY, 2007, 16 (04): : 363 - 370
  • [6] Porous Silicon Carbide/Carbon Composite Microspherules for Methane Storage
    Fengbo Li Qingli Qian Shufeng Zhang Fang Yan Guoqing Yuan Laboratory of New Materials
    Journal of Natural Gas Chemistry, 2007, (04) : 363 - 370
  • [7] Porous 3D polymers for high pressure methane storage and carbon dioxide capture
    Bracco, Silvia
    Piga, Daniele
    Bassanetti, Irene
    Perego, Jacopo
    Comotti, Angiolina
    Sozzani, Piero
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) : 10328 - 10337
  • [8] Microporous Carbon Material with High Volumetric Capacity of Methane Accumulation
    A. E. Memetova
    A. D. Zelenin
    N. R. Memetov
    A. V. Babkin
    A. V. Gerasimova
    Inorganic Materials: Applied Research, 2022, 13 : 1352 - 1358
  • [9] Microporous Carbon Material with High Volumetric Capacity of Methane Accumulation
    Memetova, A. E.
    Zelenin, A. D.
    Memetov, N. R.
    Babkin, A. V.
    Gerasimova, A. V.
    INORGANIC MATERIALS-APPLIED RESEARCH, 2022, 13 (05) : 1352 - 1358
  • [10] Preparation of Biomass Derived Porous Carbon: Application for Methane Energy Storage
    Sun, Yong
    Sun, Guang-Zhi
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL ENGINEERING AND APPLICATION (ICMEA 2016), 2016, 103 : 18 - 22