Discrete-Velocity Vector-BGK Models Based Numerical Methods for the Incompressible Navier-Stokes Equations
被引:8
|
作者:
Zhao, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R ChinaBeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
Zhao, Jin
[1
]
机构:
[1] Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100193, Peoples R China
In this paper, we propose a class of numerical methods based on discretevelocity vector-BGK models for the incompressible Navier-Stokes equations. By analyzing a splitting method with Maxwell iteration, we show that the usual lattice Boltzmann discretization of the vector-BGK models provides a good numerical scheme. Moreover, we establish the stability of the numerical scheme. The stability and secondorder accuracy of the scheme are validated through numerical simulations of the twodimensional Taylor-Green vortex flows. Further numerical tests are conducted to exhibit some potential advantages of the vector-BGK models, which can be regarded as competitive alternatives of the scalar-BGK models.
机构:
Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R ChinaBeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R China
Zhao, Jin
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R ChinaBeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R China
Zhang, Zhimin
Yong, Wen-An
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaBeijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R China