Joint Detection and Estimation of Noisy Sinusoids using Bayesian Inference with Reversible Jump MCMC Algorithm

被引:0
|
作者
Ustundag, D. [1 ]
机构
[1] Marmara Univ, Fac Sci & Arts, Dept Math, Istanbul, Turkey
来源
关键词
Bayesian Inference; Model Selection; Parameter Estimation; Reversible Jump MCMC; MODEL SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider a problem of detecting and estimating of sinusoids corrupted by random noise within a Bayesian framework. Unfortunately, all Bayesian inference drawn from posterior probability distributions of parameters requires evaluation of some complicated high-dimensional integrals. Therefore, an attempt for performing the Bayesian computation is made to Improve an efficient stochastic algorithm based on reversible jump Markov chain Monte Carlo (RJMCMC) methods. This algorithm, coded in Mathematica programming language is evaluated in simulation studies on synthetic data sets. All the simulations results support the effectiveness of the method.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [1] Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    Andrieu, C
    Doucet, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (10) : 2667 - 2676
  • [2] Comments on "Joint Bayesian Model Selection and Estimation of Noisy Sinusoids Via Reversible Jump MCMC"
    Roodaki, Alireza
    Bect, Julien
    Fleury, Gilles
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (14) : 3653 - 3655
  • [3] AN EMPIRICAL BAYES APPROACH FOR JOINT BAYESIAN MODEL SELECTION AND ESTIMATION OF SINUSOIDS VIA REVERSIBLE JUMP MCMC
    Roodaki, Alireza
    Bect, Julien
    Fleury, Gilles
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1048 - 1052
  • [4] Reversible jump MCMC for joint detection and estimation of sources in colored noise
    Larocque, JR
    Reilly, JP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 231 - 240
  • [5] Bayesian Volterra system identification using reversible jump MCMC algorithm
    Karakus, O.
    Kuruoglu, E. E.
    Altinkaya, M. A.
    SIGNAL PROCESSING, 2017, 141 : 125 - 136
  • [6] Segmentation of SAR Intensity Imagery With a Voronoi Tessellation, Bayesian Inference, and Reversible Jump MCMC Algorithm
    Li, Yu
    Li, Jonathan
    Chapman, Michael A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04): : 1872 - 1881
  • [7] Joint Source Number Detection and DOA Estimation via Reversible Jump MCMC
    Jin Mei-na
    Zhao Yong-jun
    Li Dong-hai
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 825 - 829
  • [8] Bayesian inference for mixtures of von Mises distributions using reversible jump MCMC sampler
    Mulder, Kees
    Jongsma, Pieter
    Klugkist, Irene
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (09) : 1539 - 1556
  • [9] Joint estimation of target number and DOA using reversible jump MCMC in sea clutter
    Lu, XL
    Kirlin, L
    Wang, J
    SAM2002: IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, 2002, : 346 - 349
  • [10] A bayesian approach to map QTLs using reversible jump MCMC
    da Silva, Joseane Padilha
    Leandro, Roseli Aparecida
    CIENCIA E AGROTECNOLOGIA, 2009, 33 (04): : 1061 - 1070