Assessment of wind turbine structural integrity using response surface methodology

被引:44
|
作者
Toft, Henrik Stensgaard [1 ,2 ]
Svenningsen, Lasse [2 ]
Moser, Wolfgang [3 ]
Sorensen, John Dalsgaard [1 ]
Thogersen, Morten Lybech [2 ]
机构
[1] Aalborg Univ, Dept Civil Engn, Aalborg, Denmark
[2] EMD Int AS, Aalborg, Denmark
[3] Nordex Energy GmbH, Hamburg, Germany
关键词
Wind turbine loads; Response surface methodology; Fatigue loads; Extreme loads;
D O I
10.1016/j.engstruct.2015.10.043
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In site suitability assessment of wind turbines, it is often the case that one or several wind climate parameters exceed the reference values for the wind turbine design class. In such cases, the IEC 61400-1 requires a load calculation based on the site specific wind climate conditions in order to document the structural integrity. This load calculation demands a significant number of aero-elastic simulations which are time consuming to perform and require expert knowledge. In this paper it is investigated, to which extent the site specific loads can be determined based on a response surface methodology (RSM). Two response surfaces are presented, formulated based on Taylor approximation and Central Composite Design. For each RSM, the model uncertainty is estimated for different combinations of the wind climate parameters, along with the statistical uncertainty introduced by a limited number of random seeds. The results show that fatigue loads during power production, in general, can be assessed accurately using both RSMs. However, central composite design introduces the smallest model uncertainty. For ultimate loads resulting from extreme turbulent inflow, a larger model uncertainty is introduced. Central composite design leads, again, to the lowest model uncertainty. The statistical uncertainty related to the number of aero-elastic simulations is modelled for each RSM using bootstrapping. In general, the statistical uncertainty related to the number of random seeds is larger than the model uncertainty related to the RSMs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 50 条
  • [1] WIND TURBINE ROTOR MODELLING USING RESPONSE SURFACE METHODOLOGY
    Sinopoli, Lucas
    Ordonez, Martin
    Quaicoe, John E.
    2010 23RD CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2010,
  • [2] Acoustic Emission for Structural Integrity Assessment of Wind Turbine Blades
    Tsopelas, Nikolaos K.
    Papasalouros, Dimitrios G.
    Anastasopoulos, Athanasios A.
    Kourousis, Dimitrios A.
    Dong, Jason W.
    ADVANCES IN ACOUSTIC EMISSION TECHNOLOGY, 2015, 158 : 369 - 382
  • [3] Application of structural integrity assessment procedure on an axle pin of a wind turbine
    Gubeljak, N.
    Cvetic, M.
    Bozic, Z.
    Predan, J.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (08) : 1284 - 1294
  • [4] Structural integrity assessment of floating offshore wind turbine support structures
    Moghaddam, Behrooz Tafazzoli
    Hamedany, Ali Mahboob
    Taylor, Jessica
    Mehmanparast, Ali
    Brennan, Feargal
    Davies, Catrin Mair
    Nikbin, Kamran
    OCEAN ENGINEERING, 2020, 208
  • [5] INFLUENCE OF GEOMETRIC PARAMETERS ON THE PERFORMANCE OF SAVONIUS WIND TURBINE USING THE RESPONSE SURFACE METHODOLOGY
    Torres, Sebastian
    Marulanda, Agustin
    Montoya, Miguel
    Hernandez, Camilo
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 8B, 2021,
  • [6] Coordinated controller design of PMSG-based wind turbine using response surface methodology and NSGAII
    Bharathidasan, Shanmugam Gurusamy
    Kumudinidevi, Raguru Pandu
    Ravichandran, Sharon
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2015, 25 (11): : 2781 - 2799
  • [7] Vibration-based Structural Health Assessment of a wind Turbine Tower Using a Wind turbine Model
    Kim, Wonsul
    Yi, Jin-Hak
    Kim, Jeong-Tae
    Park, Jae-Hyung
    STRUCTURAL HEALTH MONITORING - FROM SENSING TO DIAGNOSIS AND PROGNOSIS, 2017, 188 : 333 - 339
  • [8] Design and optimization of a siphon turbine using the response surface methodology
    Guerra, Juliana
    Velasquez, Laura
    Rubio-Clemente, Ainhoa
    Jaramillo, Leyla
    Chica, Edwin
    RESULTS IN ENGINEERING, 2024, 22
  • [9] Structural health monitoring of an offshore wind turbine tower using iFEM methodology
    Li, Mingyang
    Kefal, Adnan
    Oterkus, Erkan
    Oterkus, Selda
    OCEAN ENGINEERING, 2020, 204
  • [10] Wind turbine airfoil design using response surface method
    Sun, Hyosung
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (05) : 1335 - 1340