Fractal dimension and vector quantization

被引:7
|
作者
Kumaraswamy, A
Megalooikonomou, V [1 ]
Faloutsos, C
机构
[1] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
[2] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
vector quantization; fractal dimension; databases;
D O I
10.1016/j.ipl.2004.04.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the performance of a vector quantizer for a self-similar data set is related to the intrinsic ("fractal") dimension of the data set. We derive a formula for predicting the error-rate, given the fractal dimension and discuss how we can use our result for evaluating the performance of vector quantizers quickly. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 50 条
  • [1] Relation between fractal dimension and performance of vector quantization
    Kumaraswamy, K
    Faloutsos, C
    Shan, GQ
    Megalooikonomou, V
    [J]. DCC 2004: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2004, : 547 - 547
  • [2] ANALYSIS OF USING FRACTAL DIMENSION AND VECTOR QUANTIZATION IN CBIR
    Shih, An-Zen
    [J]. PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2, 2015, : 462 - 465
  • [3] Variable-dimension vector quantization
    Das, A
    Rao, AV
    Gersho, A
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1996, 3 (07) : 200 - 202
  • [4] Combining fractal image compression and vector quantization
    Hamzaoui, R
    Saupe, D
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (02) : 197 - 208
  • [5] Vector quantization of images using fractal dimensions
    Moyamoto, T
    Suzuki, Y
    Saga, S
    Maeda, J
    [J]. SMCIA/05: PROCEEDINGS OF THE 2005 IEEE MID-SUMMER WORKSHOP ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2005, : 214 - 217
  • [6] Enhancing fractal image compression with vector quantization
    Hamzaoui, R
    Muller, M
    Saupe, D
    [J]. 1996 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP, PROCEEDINGS, 1996, : 231 - 234
  • [7] Image coding using a fractal/vector quantization model
    Masselos, K
    Kittes, G
    Karayiannis, YA
    Stouraitis, T
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 797 - 800
  • [8] Vector-valued fractal functions: Fractal dimension and fractional calculus
    Verma, Manuj
    Priyadarshi, Amit
    Verma, Saurabh
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (04): : 830 - 853
  • [9] Variable dimension vector quantization based image watermarking
    Makur, A
    Selvi, SS
    [J]. SIGNAL PROCESSING, 2001, 81 (04) : 889 - 893
  • [10] Fractal image compression based on delaunay triangulation and vector quantization
    Davoine, F
    Antonini, M
    Chassery, JM
    Barlaud, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (02) : 338 - 346