Semi-Supervised Multi-Task Learning for Lung Cancer Diagnosis

被引:0
|
作者
Khosravan, Naji [1 ]
Bagci, Ulas [1 ]
机构
[1] Univ Cent Florida UCF, Ctr Resaerch Comp Vis CRCV, Orlando, FL 32816 USA
关键词
PULMONARY NODULES; SCANS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung nodules is of great importance in lung cancer screening. Existing research recognizes the critical role played by CAD systems in early detection and diagnosis of lung nodules. However, many CAD systems, which are used as cancer detection tools, produce a lot of false positives (FP) and require a further FP reduction step. Furthermore, guidelines for early diagnosis and treatment of lung cancer are consist of different shape and volume measurements of abnormalities. Segmentation is at the heart of our understanding of nodules morphology making it a major area of interest within the field of computer aided diagnosis systems. This study set out to test the hypothesis that joint learning of false positive (FP) nodule reduction and nodule segmentation can improve the computer aided diagnosis (CAD) systems' performance on both tasks. To support this hypothesis we propose a 3D deep multi-task CNN to tackle these two problems jointly. We tested our system on LUNA16 dataset and achieved an average dice similarity coefficient (DSC) of 91% as segmentation accuracy and a score of nearly 92% for FP reduction. As a proof of our hypothesis, we showed improvements of segmentation and FP reduction tasks over two baselines. Our results support that joint training of these two tasks through a multi-task learning approach improves system performance on both. We also showed that a semi-supervised approach can be used to overcome the limitation of lack of labeled data for the 3D segmentation task.
引用
收藏
页码:710 / 713
页数:4
相关论文
共 50 条
  • [1] Semi-Supervised Multi-Task Learning with Task Regularizations
    Wang, Fei
    Wang, Xin
    Li, Tao
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 562 - 568
  • [2] ACTIVE LEARNING FOR SEMI-SUPERVISED MULTI-TASK LEARNING
    Li, Hui
    Liao, Xuejun
    Carin, Lawrence
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1637 - +
  • [3] Semi-supervised Multi-task Learning for Semantics and Depth
    Wang, Yufeng
    Tsai, Yi-Hsuan
    Hung, Wei-Chih
    Ding, Wenrui
    Liu, Shuo
    Yang, Ming-Hsuan
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2663 - 2672
  • [4] Semi-supervised Multi-task Learning with Auxiliary data
    Liu, Bo
    Chen, Qihang
    Xiao, Yanshan
    Wang, Kai
    Liu, Junrui
    Huang, Ruiguang
    Li, Liangjiao
    INFORMATION SCIENCES, 2023, 626 : 626 - 639
  • [5] Semi-Supervised Depth Estimation by Multi-Task Learning
    Fu, Qingshun
    Dong, Xuan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3765 - 3771
  • [6] Semi-Supervised Multi-Task Regression
    Zhang, Yu
    Yeung, Dit-Yan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 617 - +
  • [7] MULTI-TASK SEMI-SUPERVISED LEARNING FOR PULMONARY LOBE SEGMENTATION
    Jia, Jingnan
    Zhai, Zhiwei
    Bakker, M. Els
    Hernandez-Giron, I
    Staring, Marius
    Stoel, Berend C.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1329 - 1332
  • [8] MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization
    Qi, Lei
    Yang, Hongpeng
    Shi, Yinghuan
    Geng, Xin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (06)
  • [9] Online Semi-supervised Multi-task Distance Metric Learning
    Li, Ya
    Tao, Dacheng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 474 - 479
  • [10] Representation Learning via Semi-supervised Autoencoder for Multi-task Learning
    Zhuang, Fuzhen
    Luo, Dan
    Jin, Xin
    Xiong, Hui
    Luo, Ping
    He, Qing
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1141 - 1146