Tutorial Dialogue Modes in a Large Corpus of Online Tutoring Transcripts

被引:2
|
作者
Morrison, Donald M. [1 ]
Nye, Benjamin [1 ]
Rus, Vasile [1 ]
Snyder, Sarah [2 ]
Boller, Jennifer [2 ]
Miller, Kenneth [2 ]
机构
[1] Univ Memphis, Inst Intelligent Syst, Memphis, TN 38152 USA
[2] Tutor Com, New York, NY USA
来源
ARTIFICIAL INTELLIGENCE IN EDUCATION, AIED 2015 | 2015年 / 9112卷
关键词
Human tutorial dialogue; Dialogue mode; Data mining; Hybrid tutoring systems;
D O I
10.1007/978-3-319-19773-9_101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building on previous work in this area, we provide a description and justification for a new way of identifying modes and mode switches in tutorial dialogues, part of a coding scheme involving 16 modes and 125 distinct dialogue acts. We also present preliminary results from an analysis of 1,438 human-annotated transcripts, consisting of more than 90,000 turns. Among other findings, this analysis shows subtle differences in the "mode architecture" of successful vs. less successful sessions, as judged by expert tutors.
引用
收藏
页码:722 / 725
页数:4
相关论文
共 27 条
  • [1] Dialogue modes in expert tutoring
    Cade, Whitney L.
    Copeland, Jessica L.
    Person, Natalie K.
    D'Mello, Sidney K.
    INTELLIGENT TUTORING SYSTEM, PROCEEDINGS, 2008, 5091 : 470 - +
  • [2] Learning the use of discourse markers in tutorial dialogue for an intelligent tutoring system
    Kim, JH
    Glass, M
    Freedman, R
    Evens, MW
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2000, : 262 - 267
  • [3] A Corpus for Modeling Word Importance in Spoken Dialogue Transcripts
    Kafle, Sushant
    Huenerfauth, Matt
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 99 - 103
  • [4] When Is Tutorial Dialogue More Effective Than Step-Based Tutoring?
    Chi, Min
    Jordan, Pamela
    VanLehn, Kurt
    INTELLIGENT TUTORING SYSTEMS, ITS 2014, 2014, 8474 : 210 - 219
  • [5] The Tutorbot Corpus - A Corpus for Studying Tutoring Behaviour in Multiparty Face-to-Face Spoken Dialogue
    Koutsombogera, Maria
    Al Moubayed, Samer
    Bollepalli, Bajibabu
    Abdelaziz, Ahmed Hussen
    Johansson, Martin
    Aguas Lopes, Jose David
    Novikova, Jekaterina
    Oertel, Catharine
    Stefanov, Kalin
    Varol, Gul
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 4196 - 4201
  • [6] CIMA: A Large Open Access Dialogue Dataset for Tutoring
    Stasaski, Katherine
    Kao, Kimberly
    Hearst, Marti A.
    INNOVATIVE USE OF NLP FOR BUILDING EDUCATIONAL APPLICATIONS, 2020, : 52 - 64
  • [7] The DARE Corpus: A Resource for Anaphora Resolution in Dialogue Based Intelligent Tutoring Systems
    Niraula, Nobal B.
    Rus, Vasile
    Banjade, Rajendra
    Stefanescu, Dan
    Baggett, William
    Morgan, Brent
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 3199 - 3203
  • [8] Design and implementation of an online corpus of presentation transcripts of TED Talks
    Hasebe, Yoichiro
    CURRENT WORK IN CORPUS LINGUISTICS: WORKING WITH TRADITIONALLY- CONCEIVED CORPORA AND BEYOND (CILC2015), 2015, 198 : 174 - 182
  • [9] Large-Scale Multimodal Movie Dialogue Corpus
    Yasuhara, Ryu
    Inoue, Masashi
    Suga, Ikuya
    Kosaka, Tetsuo
    ICMI'16: PROCEEDINGS OF THE 18TH ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2016, : 414 - 415
  • [10] RadioTalk: a large-scale corpus of talk radio transcripts
    Beeferman, Doug
    Brannon, William
    Roy, Deb
    INTERSPEECH 2019, 2019, : 564 - 568