Establishment of a quantitative ELISA capable of determining peptide-MHC class I interaction

被引:77
|
作者
Sylvester-Hvid, C [1 ]
Kristensen, N [1 ]
Blicher, T [1 ]
Ferré, H [1 ]
Lauemoller, SL [1 ]
Wolf, XA [1 ]
Lamberth, K [1 ]
Nissen, MH [1 ]
Pedersen, LO [1 ]
Buus, S [1 ]
机构
[1] Univ Copenhagen, DK-1168 Copenhagen, Denmark
来源
TISSUE ANTIGENS | 2002年 / 59卷 / 04期
关键词
ELISA; MHC class I; peptide-MHC interaction; W6/32;
D O I
10.1034/j.1399-0039.2002.590402.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Many different assays for measuring peptide-MHC interactions have been suggested over the years. Yet, there is no generally accepted standard method available. We have recently generated preoxidized recombinant MHC class I molecules (MHC-I) which can be purified to homogeneity under denaturing conditions (i.e., in the absence of any contaminating peptides). Such denatured MHC-I molecules are functional equivalents of "empty molecules". When diluted into aqueous buffer containing beta-2 microglobulin (beta(2) m) and the appropriate peptide, they fold rapidly and efficiently in an entirely peptide dependent manner. Here, we exploit the availability of these molecules to generate a quantitative ELISA-based assay capable of measuring the affinity of the interaction between peptide and MHC-I. This assay is simple and sensitive, and one can easily envisage that the necessary reagents, standards and protocols could be made generally available to the scientific community.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 50 条
  • [1] Establishment of a quantitative ELISA capable of determining peptide-MHC class I interaction and maturation
    Sylvester-Hvid, C
    Kristensen, NS
    Blicher, T
    Pedersen, LO
    Buus, S
    TISSUE ANTIGENS, 2002, 59 : 25 - 25
  • [2] Quantitative analysis of peptide-MHC class II interaction
    Fleckenstein, B
    Jung, G
    Wiesmüller, KH
    SEMINARS IN IMMUNOLOGY, 1999, 11 (06) : 405 - 416
  • [3] DEFINING RULES FOR THE PEPTIDE-MHC CLASS-II INTERACTION
    SINIGAGLIA, F
    HAMMER, J
    CURRENT OPINION IN IMMUNOLOGY, 1994, 6 (01) : 52 - 56
  • [4] Automated benchmarking of peptide-MHC class I binding predictions
    Trolle, Thomas
    Metushi, Imir G.
    Greenbaum, Jason A.
    Kim, Yohan
    Sidney, John
    Lund, Ole
    Sette, Alessandro
    Peters, Bjoern
    Nielsen, Morten
    BIOINFORMATICS, 2015, 31 (13) : 2174 - 2181
  • [5] Improving peptide-MHC class I binding prediction for unbalanced datasets
    Sales, Ana Paula
    Tomaras, Georgia D.
    Kepler, Thomas B.
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [6] Improving peptide-MHC class I binding prediction for unbalanced datasets
    Ana Paula Sales
    Georgia D Tomaras
    Thomas B Kepler
    BMC Bioinformatics, 9
  • [7] The final touches make perfect the peptide-MHC class I repertoire
    Hammer, Gianna Elena
    Kanaseki, Takayuki
    Shastri, Nilabh
    IMMUNITY, 2007, 26 (04) : 397 - 406
  • [8] Peptide-MHC class I and class II tetramers: From flow to mass cytometry
    Christophersen, Asbjorn
    HLA, 2020, 95 (03) : 169 - 178
  • [9] Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes
    Bordner, AJ
    Abagyan, R
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 63 (03) : 512 - 526
  • [10] RankMHC: Learning to Rank Class-I Peptide-MHC Structural Models
    Fasoulis, Romanos
    Paliouras, Georgios
    Kavraki, Lydia E.
    Journal of Chemical Information and Modeling, 2024, 64 (23) : 8729 - 8742