Polarimetric SAR image classification by using generalized optimization of polarimetric contrast enhancement

被引:9
|
作者
Yang, Jian [1 ]
Xiong, Tao [1 ]
Peng, Ying-Ning [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
D O I
10.1080/01431160600589161
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, a generalized optimization of polarimetric contrast enhancement (GOPCE) is employed for supervised polarimetric synthetic aperture radar (SAR) image classification. The GOPCE is the extension of optimization of polarimetric contrast enhancement (OPCE), and it includes three optimal coefficients associated with the Cloude entropy and two special similarity parameters in addition to the optimal polarization states. Using the GOPCE, the authors propose an approach to supervised classification. For comparison, the authors also use the maximum likelihood (ML) classifier for classification, based on the complex Wishart distribution. The classification results of a NASA/JPL AIRSAR L-band image over San Francisco demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:3413 / 3424
页数:12
相关论文
共 50 条
  • [1] Generalized Optimization of Polarimetric Contrast Enhancement
    Yang, Jian
    Dong, Guiwei
    Peng, Yingning
    Yamaguchi, Yoshio
    Yamada, Hiroyoshi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (03) : 171 - 174
  • [2] Speckle filtering of polarimetric SAR image and the enhancement for classification
    Gu, J
    Chen, YL
    Yang, J
    IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, Vols 1 and 2, 2005, : 378 - 382
  • [3] Polarimetric SAR image classification employing subaperture polarimetric analysis
    Ainsworth, TL
    Lee, JS
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 48 - 50
  • [4] Ship detection and characterization with generalized optimization of polarimetric contrast enhancement
    Li Haiyan
    He Yijun
    Meng Lei
    Wang Wenguang
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (03): : 541 - 545
  • [5] Unsupervised polarimetric SAR image classification
    Xu, JY
    Yang, J
    Peng, YN
    Wang, C
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2004, E87B (04) : 1048 - 1052
  • [6] Polarimetric SAR Image Terrain Classification
    West, R. Derek
    LaBruyere, Thomas E., III
    Skryzalin, Jacek
    Simonson, Katherine M.
    Hansen, Ross L.
    Van Benthem, Mark H.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (11) : 4467 - 4485
  • [7] Using similarity parameters for supervised polarimetric SAR image classification
    Xu, JY
    Yang, J
    Peng, YN
    Wang, C
    Liou, YA
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2002, E85B (12) : 2934 - 2942
  • [8] Using cross-entropy for polarimetric SAR image classification
    Xu, JY
    Yang, J
    Peng, YN
    Wang, C
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1917 - 1919
  • [9] A NOVEL APPROACH TO BUILDING COLLAPSE DETECTION FROM POST-SEISMIC POLARIMETRIC SAR IMAGERY BY USING OPTIMIZATION OF POLARIMETRIC CONTRAST ENHANCEMENT
    Zhang, Haizhen
    Wang, Qing
    Zeng, Qiming
    Jiao, Jian
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3270 - 3273
  • [10] Polarimetric SAR image classification using support vector machines
    Fukuda, S
    Hirosawa, H
    IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (12) : 1939 - 1945