Linear optics simulations of the quantum baker's map

被引:6
|
作者
Howell, JC [1 ]
Yeazell, JA [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevA.61.012304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The unitary evolution of linear optics can be used to model quantum computational networks. In this paper, a quantum simulation of a classically chaotic map (the baker's map) is developed using linear optics. Two different models are presented. The first model employs only 50-50 beam splitters and phase shifters to simulate universal 2-qubit gates of a quantum computer. The second model uses the discrete Fourier transform generated by symmetric N X N fiber couplers. If single photons are used as inputs for these linear optics models, the result is a physical realization of the quantum baker's map.
引用
收藏
页码:123041 / 123046
页数:6
相关论文
共 50 条
  • [1] Linear optics simulations of the quantum baker's map
    2000, American Physical Society (61):
  • [2] Decoherence and linear entropy increase in the quantum baker's map
    Soklakov, AN
    Schack, R
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036212
  • [3] Quantum Variance and Ergodicity for the Baker's Map
    M. Degli Esposti
    S. Nonnenmacher
    B. Winn
    Communications in Mathematical Physics, 2006, 263 : 325 - 352
  • [4] Entangling power of the quantum baker's map
    Scott, AJ
    Caves, CM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (36): : 9553 - 9576
  • [5] Quantum variance and ergodicity for the baker's map
    Esposti, MD
    Nonnenmacher, S
    Winn, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (02) : 325 - 352
  • [6] Experimental implementation of the quantum baker's map
    Weinstein, YS
    Lloyd, S
    Emerson, J
    Cory, DG
    PHYSICAL REVIEW LETTERS, 2002, 89 (15)
  • [7] Realizing the quantum baker's map on a NMR quantum computer
    Brun, TA
    Schack, R
    PHYSICAL REVIEW A, 1999, 59 (04): : 2649 - 2658
  • [8] Irreversible quantum Baker map
    Lozinski, A
    Pakonski, P
    Zyczkowski, K
    PHYSICAL REVIEW E, 2002, 66 (06): : 4
  • [9] Quantum baker map on the sphere
    Pakonski, P
    Ostruszka, A
    Zyczkowski, K
    NONLINEARITY, 1999, 12 (02) : 269 - 284
  • [10] Shuffling cards, factoring numhers and the quantum baker's map
    Lakshminarayan, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (37): : L597 - L605