Nonexistence of minimal Lagrangian spheres in hyperKahler manifolds

被引:4
|
作者
Smoczyk, K [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
D O I
10.1007/PL00013454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove chat for n > 1 one cannot immerse S-2n as a minimal Lagrangian manifold into a hyperKahler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L-2n into a hyperKahler manifold H-4n must have nonvanishing second Betti number beta(2) and that if beta(2) = 1, L-2n is a Kahler manifold and more precisely a Kahler submanifold in H-4n w.r.t. one of the complex structures on H-4n. In addition we derive a result for the other Betti numbers.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条