Retaining Interactivity in a Visual Analytics System for Massive Public Transportation Data Sets

被引:2
|
作者
Woerner, Michael [1 ]
Ertl, Thomas [1 ]
机构
[1] Univ Stuttgart, Inst Visualizat & Interact Syst, GSaME, Stuttgart, Germany
关键词
D O I
10.1109/HICSS.2014.175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual analytics aims to be scalable in several aspects, one of which is being able to handle large data volumes in an interactive system. This can be achieved by designing efficient analysis and visualization algorithms that ensure short response times to user interactions or by providing appropriate hardware. With increasing data sizes, however, an analyst will eventually have to wait for the completion of computations or renderings. For these cases, we present a framework which remains responsive and keeps the analyst informed on and in control of pending operations. Our implementation builds on performing complex analysis and rendering tasks in the background, providing progress indications, displaying preliminary results, and allowing changes to task elements while continuing to evaluate others. We demonstrate the advantages of our approach for huge data sets by analyzing a real-world public transportation vehicle data set.
引用
收藏
页码:1354 / 1363
页数:10
相关论文
共 50 条
  • [1] Visual Analytics for Transportation Incident Data Sets
    Wongsuphasawat, Krist
    Pack, Michael L.
    Filippova, Darya
    VanDaniker, Michael
    Olea, Andreea
    [J]. TRANSPORTATION RESEARCH RECORD, 2009, (2138) : 135 - 145
  • [2] TranSeVis: A Visual Analytics System for Transportation Data Sensing and Exploration
    Gong, Rui
    Teng, Zhiyao
    Han, Mei
    Wei, Lirui
    Zhang, Yuwei
    Pu, Jiansu
    [J]. COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING: 15TH INTERNATIONAL CONFERENCE, CDVE 2018, 2018, 11151 : 1 - 10
  • [3] VAIT: A Visual Analytics System for Metropolitan Transportation
    Liu, Siyuan
    Pu, Jiansu
    Luo, Qiong
    Qu, Huamin
    Ni, Lionel M.
    Krishnan, Ramayya
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (04) : 1586 - 1596
  • [4] Using Data Analytics to Optimize Public Transportation on a College Campus
    Dalkilic, M. M.
    [J]. 2020 9TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2020, : 6 - 6
  • [5] A Public Transportation Journey Planner Enabled by IoT Data Analytics
    Puiu, Dan
    Bischof, Stefan
    Serbanescu, Bogdan
    Nechifor, Septimiu
    Parreira, Josiane
    Schreiner, Herwig
    [J]. PROCEEDINGS OF THE 2017 20TH CONFERENCE ON INNOVATIONS IN CLOUDS, INTERNET AND NETWORKS (ICIN), 2017, : 355 - 359
  • [6] BIGSEA: A Big Data analytics platform for public transportation information
    Alic, Andy S.
    Almeida, Jussara
    Aloisio, Giovanni
    Andrade, Nazareno
    Antunes, Nuno
    Ardagna, Danilo
    Badia, Rosa M.
    Basso, Tania
    Blanquer, Ignacio
    Braz, Tarciso
    Brito, Andrey
    Elia, Donatello
    Fiore, Sandro
    Guedes, Dorgival
    Lattuada, Marco
    Lezzi, Daniele
    Maciel, Matheus
    Meira Jr, Wagner
    Mestre, Demetrio
    Moraes, Regina
    Morais, Fabio
    Pires, Carlos Eduardo
    Kozievitch, Nadia P.
    dos Santos, Walter
    Silva, Paulo
    Vieira, Marco
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 96 : 243 - 269
  • [7] Using Data Analytics to Optimize Public Transportation on a College Campus
    Zimmer, Kurt
    Kurban, Hasan
    Jenne, Mark
    Keating, Logan
    Maull, Perry
    Dalkilic, Mehmet M.
    [J]. 2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 460 - 469
  • [8] iVizTRANS: Interactive Visual Learning for Home and Work Place Detection from Massive Public Transportation Data
    Yu, Liang
    Wu, Wei
    Li, Xiaohui
    Li, Guangxia
    Ng, Wee Siong
    Ng, See-Kiong
    Huang, Zhongwen
    Arunan, Anushiya
    Watt, Hui Min
    [J]. 2015 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, 2015, : 49 - 56
  • [9] Ski injury predictive analytics from massive ski lift transportation data
    Delibasic, Boris
    Radovanovic, Sandro
    Jovanovic, Milos
    Obradovic, Zoran
    Suknovic, Milija
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART P-JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY, 2018, 232 (03) : 208 - 217
  • [10] GAP BOOTSTRAP METHODS FOR MASSIVE DATA SETS WITH AN APPLICATION TO TRANSPORTATION ENGINEERING
    Lahiri, S. N.
    Spiegelman, C.
    Appiah, J.
    Rilett, L.
    [J]. ANNALS OF APPLIED STATISTICS, 2012, 6 (04): : 1552 - 1587