A new low-temperature synthesis and electrochemical properties of LiV3O8 hydrate as cathode material for lithium-ion batteries

被引:27
|
作者
Feng, Yan [1 ]
Hou, Feng [1 ]
Li, Yali [1 ]
机构
[1] Tianjin Univ, Key Lab Adv Ceram & Machining Tech, Chinese Educ Minist, Sch Mat Sci & Engn, Tianjin 30072, Peoples R China
关键词
LiV3O8; Cathode materials; Low-temperature synthesis; Lithium-ion battery; PERFORMANCE; IMPROVEMENT; LI1.1V3O8; PHASE; GEL;
D O I
10.1016/j.jpowsour.2009.02.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiV3O8, synthesized from V2O5 and LiOH, by heating of a suspension Of V2O5 in a LiOH solution at a low-temperature (100-200 degrees), exhibits a high discharge capacity and excellent cyclic stability at a high current density as a cathode material of lithium-ion battery. The charge-discharge curve shows a maximum discharge capacity of 228.6 mAh g(-1) at a current density of 150 mA g(-1) (0.5 C rate) and the 100 cycles discharge capacity remains 215 mAh g(-1). X-ray diffraction indicates the low degree of crystallinity and expanding of inter-plane distance of the LiV3O8 phase, and scanning electronic microscopy reveals the formation of nano-domain structures in the products, which account for the enhanced electrochemical performance. In contrast, the LiV3O8 phase formed at a higher temperature (300 degrees C) consists of well-developed crystal phases, and coherently, results in a distinct reduction of discharge capacity with cycle numbers, Thus, an enhanced electrochemical performance has been achieved for LiV3O8 by the soft chemical method via a low-temperature heating process. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:708 / 713
页数:6
相关论文
共 50 条
  • [1] Low-temperature synthesis of LiV3O8 as cathode material for rechargeable lithium-ion batteries
    Liu, JR
    Wang, M
    Yin, DC
    Huang, WD
    JOURNAL OF INORGANIC MATERIALS, 2002, 17 (03) : 617 - 620
  • [2] Synthesis and Electrochemical Performance of LiV3O8/MWCNTs Cathode Material for Lithium-ion Batteries
    Ren, Xiangzhong
    Shi, Chuan
    Zhang, Peixin
    Liu, Jianhong
    POWDER TECHNOLOGY & APPLICATIONS IV, 2012, 454 : 105 - 109
  • [3] Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries
    Ma, Hua
    Yuan, Zhiqing
    Cheng, Fangyi
    Liang, Jing
    Tao, Zhanliang
    Chen, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (20) : 6030 - 6035
  • [4] Study on ultrafast synthesis of LiV3O8 cathode material for lithium-ion batteries
    Xiong, Xunhui
    Wang, Zhixing
    Li, Xinhai
    Guo, Huajun
    MATERIALS LETTERS, 2012, 76 : 8 - 10
  • [5] Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries
    Dai, JX
    Li, SFY
    Gao, ZQ
    Siow, KS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) : 3057 - 3062
  • [6] Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries
    Idris, Nurul Hayati
    Rahman, M. M.
    Wang, Jia-Zhao
    Chen, Zhi-Xin
    Liu, Hua-Kun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (03) : 343 - 349
  • [7] Synthesis and electrochemical properties of LiV3O8/PAn composite as a cathode material for lithium secondary batteries
    Ling-Ling Xie
    Xiao-Yu Cao
    Li-Xu Zhang
    Zhong-Xu Dai
    Ling-Bo Qu
    Electronic Materials Letters, 2013, 9 : 183 - 186
  • [8] Synthesis and Electrochemical Properties of LiV3O8/PAn Composite as a Cathode Material for Lithium Secondary Batteries
    Xie, Ling-Ling
    Cao, Xiao-Yu
    Zhang, Li-Xu
    Dai, Zhong-Xu
    Qu, Ling-Bo
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (02) : 183 - 186
  • [9] A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries
    Liu, QY
    Liu, HW
    Zhou, XW
    Cong, CJ
    Zhang, KL
    SOLID STATE IONICS, 2005, 176 (17-18) : 1549 - 1554
  • [10] Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries
    Heli, H.
    Yadegari, H.
    Jabbari, A.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 126 (03) : 476 - 479